
Nom:	
Prénom :	
Classe :	

Cours Centre instantané de rotation

CI 17 : Le Comportement cinématique

Définition du CIR:

A chaque instant, tout <u>mouvement plan</u> d'un solide <u>S</u> par rapport à un repère de référence R₀ est soit une translation, soit un mouvement équivalent à une rotation autour d'un point appelé **centre instantané de rotation** noté l

CIR dans le cas de la rotation :

Formule:

 $V = r \cdot \omega$

V : vitesse linéaire en m/s r : rayon du pignon en m ω : vitesse angulaire en rad/s

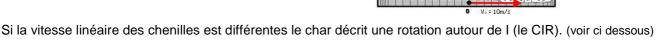
La vitesse linéaire est donc proportionnelle au rayon.____

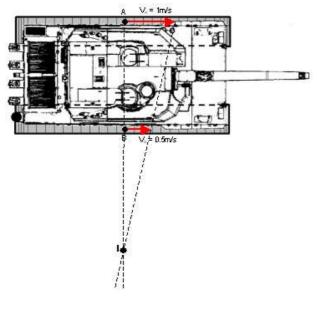
Exemple ci contre :

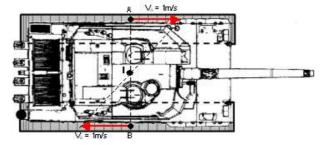
Cinq personnages en vue de dessus.

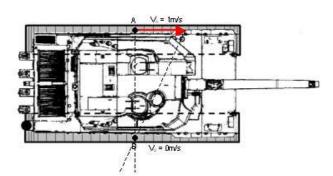
Les deux personnages aux extrémités décrivent une trajectoire en rouge.

Le personnage au centre tourne sur lui-même, il est le CIR.

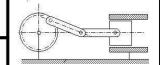

Les deux personnages intermédiaires décrivent une trajectoire en bleu.


Tous les personnages ont la même vitesse angulaire (ω) Mais ils ne possèdent pas tous la même vitesse linéaire (V)


V. = 10m/s


Exemple Char Leclerc:

Si la vitesse linéaire des chenilles est la même, le char se déplace en translation. (voir ci contre)



Nom:	
Prénom:	
Classe :	

Cours Centre instantané de rotation

CI 17 : Le Comportement cinématique

CIR dans le cas d'un mouvement plan :

La connaissance du lieu du centre instantané de rotation d'un solide en mouvement plan permet de déterminer le vecteur vitesse d'un point quelconque de ce solide.

La **position du C.I.R**. varie au cours du temps.

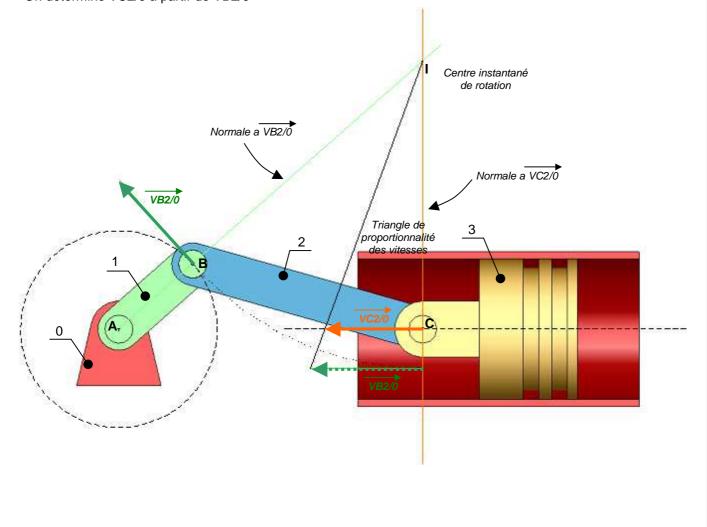
La **position C.I.R**. se situe au point d'intersection des rayons de deux vitesses de deux points du solide à un instant t c'est à dire qu'il se situe sur une **perpendiculaire à chaque vecteur vitesse**.

Dans le cas de la translation plane le C.I.R. se trouve rejeté à l'infini.

Exemple: système bielle/manivelle

On connaît la vitesse VB1/0 (calculer a partir de la formule $V = r \cdot \omega$) On souhaite déterminer la vitesse du piston en un instant t VC3/0

On sait que VB1/0 = VB2/0Et que VC3/0 = VC2/0


La bielle 2 a un mouvement plan

Nous allons chercher la relation entre VB2/0 et VC2/0 en déterminant le CIR du solide a cet instant.

On trace la normale au vecteur VB2/0 et VC2/0. Le point d'intersection est le CIR.

On trace le tringle de proportionnalité des vitesses.

On détermine VC2/0 à partir de VB2/0

