Correction anales brevet

2017

2017 Chimie GEN Aspirine

Question 1:

La formule de l'aspirine est C₉H₈O₄, ce qui signifie qu'il y a 4 atome d'oxygène dans la molécule.

Question 2:

Dans le document 1 on voit que l'estomac contient un liquide ayant un pH=2, il faut donc qu'une gélule gastrorésistante soit capable de résister à une solution ayant un pH de 2. Pour le vérifier, on prépare une solution ayant un pH de 2 (on peut mesurer le pH à l'aide d'un pH-mètre), on place une gélule gastrorésistante dans cette solution. On attend. On observe si la gélule se désintègre ou pas. Si elle se désintègre alors elle n'est pas gastrorésistante.

Question 3:

Cette question est un peu ambiguë, je pense que l'esprit de la question est d'obtenir une solution saturée.

On a s=m/V donc V=m/s

Avec V le volume en litres, m la masse en grammes, s la solubilité en g/L m=500mg=0,5g

s dépend de la température, calculons pour chaque température

A 15°C qui correspond à la température de l'eau froide du robinet, s=2,5g/L Donc V=0,5/2,5=0,2L=200mL

Commentaire : cela fait un très grand verre d'eau, il faudra avoir bien soif.

A 25°C qui correspond à de l'eau tiède, s=4,6g/L

Donc V=0,5/4,6=0,11L=110mL

Cela correspond à un verre d'eau de cantine.

A 37°C qui correspond à de l'eau une peu chaude, s=10g/L

Donc V=0,5/10=0,05L= <u>50mL</u>

Cela correspond à un petit verre mais boire de l'eau chaude n'est pas très agréable.

2017 Chimie GEN poêle à bois

Question 1.1:

Dans l'équation de la réaction, $C_6H_{10}O_5$ et O_2 sont les formules chimiques des « réactifs / produits ». « La molécule / L'atome » O_2 est composé(e) de deux « molécules / atomes » d'oxygène.

Question 1.2:

La combustion de la cellulose consomme du dioxygène et produit du dioxyde de carbone. Le poêle consomme donc le dioxygène de l'air et produit du dioxyde de carbone. Il faut donc renouveler l'air pour évacuer le dioxyde de carbone et apporter du dioxygène. Un manque de dioxygène peut causer des combustions incomplètes et générer du monoxyde de carbone, gaz toxique.

Question 2:

On a E=Pxt

Avec E l'énergie en kWh, P la puissance en kW et t le temps en heures.

Donc t=E/P

Avec \overline{E} =13000kWh et P=10 kW

Donc t=13000/10 = 1300h (environ 54 jours soit presque 2 mois)

Question 3.1:

Le document 1 montre que plus le taux d'humidité est important et moins l'énergie libérée par la combustion est importante. Il est donc préférable d'avoir un bois sec.

Question 3.2:

Le document 2 nous montre que le bois de charme traité est à exclure car il provoque la libération d'un composé nocif.

Le chêne séché serait bien mais celui dont on dispose est humide et le document 1 nous permet d'estimer son énergie libérée à 60% d'humidité à environ 5 ou 6000 kJ/kg ce qui est très inférieur au sapin séché (disponible) qui libère une énergie de plus de 12 000 kJ/kg.

Il faut donc choisir le sapin pour obtenir le plus d'énergie par kg lors de la combustion.

2017 Chimie PRO boissons

Question 1:

Le pH de la boisson est 2,8, c'est inférieur à 7, la boisson est donc acide.

Question 2:

Pour vérifier que le soda est une boisson acide, il faut mesurer ou estimer son pH. Pour mesurer le pH, il faut utiliser un pH-mètre. Pour cela, on introduit un pH-mètre dans un récipient contenant du soda et on lit la mesure affichée.

On peut estimer le pH à l'aide de papier pH ou d'indicateur colorés comme le jus de choux rouge. Le problème que l'on va rencontrer ici est que ce soda est lui-même coloré ce rend l'utilisation d'indicateurs colorés peu efficace.

Question 3:

La formule donnant l'énergie cinétique est E_c=1/2 mv²

Avec E_c l'énergie cinétique en joules (J), m la masse en kilogrammes (kg) et v la vitesse en mètres par seconde (m/s).

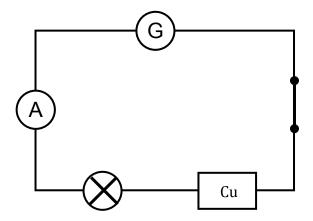
Question 4:

On a $E_c=1/2 \text{ mv}^2$

Avec m=0.06kg et v=153 km/h = 42.5m/s

Donc Ec=0,5 x 0,06 x 42,5²=54J

Question 5:


La valeur donnée est 180kJ pour 100mL donc pour 330mL c'est 3,3 fois plus : 180 x 3,3 = 594kJ

Question 6:

Une canette contient 594 000 / 54 = 11 000 fois l'énergie cinétique de la balle donc oui, une canette de boisson permet bien de faire "le plein d'énergie".

2017 Chimie PRO métaux

Question 1.1:

Question 1.2:

Plus un matériau est conducteur et plus sa résistance est faible et donc plus l'intensité du courant électrique circulant dans le circuit sera importante (pour une même tension). Ainsi, l'intensité la plus importante est observée pour le cuivre (70mA contre 12 mA). Donc le cuivre est un meilleur conducteur que le fer.

Question 1.3:

Plus l'intensité du courant électrique parcourant une lampe est importante, plus elle brille. L'autre observation est donc que la lampe brille plus avec le circuit comportant le fil de cuivre.

Question 1.4:

On a P=UxI

Avec $\overline{U} = 12V$ et I = 70 mA=0,07A

Donc $P=12 \times 0.07 = 0.84 \text{ W}$

Question 2:

La molécule responsable de la corrosion est le dioxygène qui a pour formule O₂.

Question 3.1:

Produits (les espèces formées lors de la réaction) : ions fer II (Fe^{2+}) et dihydrogène (H_2)

Réactifs (les espèces consommées lors de la réaction) : atomes de fer (Fe) et ions hydrogène (H⁺)

Question 3.2:

L'ion responsable de l'acidité (pour tous les acides et donc aussi pour l'acide chlorhydrique) est l'ion hydrogène (H⁺)

Question 3.3:

 $HO^- + H^+ \rightarrow H_2O$

La réaction produit de l'eau.

Question 3.4:

Après l'ajout de soude dans une solution acide, le pH de la solution augmente (car il y a de moins en moins d'ions hydrogène et donc la solution est de moins en moins acide).

Question 4:

Trois arguments montrant l'intérêt d'utiliser des câbles en cuivre plutôt qu'en fer :

- le cuivre est un meilleur conducteur
- le cuivre forme une couche de protection lorsqu'il s'oxyde
- le cuivre n'est pas attaqué par les pluies acides

2017 Chimie PRO pH

Question 1:

Dans l'eau de coco on trouve des minéraux :

- potassium : K, numéro atomique 19
- sodium : Na, numéro atomique 11
- magnésium : Mg, numéro atomique 12

Question 2 a:

Pour mesurer le pH d'une solution il faut :

- un récipient pour mettre la solution (un bécher)
- un pH-mètre pour mesurer le pH

Question 2 b:

Il faut introduire le pH-mètre dans le bécher et lire la valeur du pH. Il faut ensuite rincer le pH-mètre et le remettre dans sa solution de stockage.

Question 2 C:

Il pH obtenu est inférieur à 7 donc ce lait de coco est acide.

Question 3 a:

Les ions responsables de l'acidité sont les ions hydrogène de formule H⁺.

Question 3 b:

Les ions H⁺ réagissent avec l'aluminium pour former des ions aluminium et du dihydrogène. Une solution dans une gourde en aluminium attaquera les parois de la gourde et dégagera un gaz qui fera monter la pression dans la gourde. Avec le temps, la gourde pourra être percée. C'est pour cela que les gourdes en aluminium on un revêtement intérieur en polymère qui les protège des boissons acides.

2017 Chimie PRO sauce tomate

Question 1:

Symbole	Nom de l'élément chimique	Nombre d'atome(s) présent(s) dans l'eau
Н	Hydrogène	2
0	oxygène	1

Question 2.1:

Une partie du bicarbonate de soude va se dissoudre pour former une solution saturée. Il restera de la poudre blanche de bicarbonate de soude au fond du récipient.

Question 2.2:

La solubilité est la quantité maximale pouvant être dissoute dans un litre de solution (saturée).

Question 3.1:

Au vu de l'échelle colorimétrique, pH =8

Question 3.2:

Le pH de la solution est supérieur à 7, elle est donc basique.

Question 3.3:

Les ions responsables du caractère basique de la solution sont les ions HO⁻.

Question 4.1:

Les réactifs sont les espèces chimiques qui sont consommées : H^+ et HCO_3^-

Question 4.2:

- disparition de l'espèce H⁺
- apparition de l'espèce H₂O

Question 5:

La recette de la grand-mère fonctionne car lorsque l'on ajoute une solution basique à une solution acide, les ions HO réagissent avec les ions H⁺ de la solution acide. Il y a donc moins d'ions H⁺ et la solution est donc moins acide. (On n'aborde pas le sujet de la modification du gout ici ;-).

2017 PHY GEN capteur de fumée

Question 1:

La source primaire de lumière contenue dans le détecteur de fumée est une diode électroluminescente.

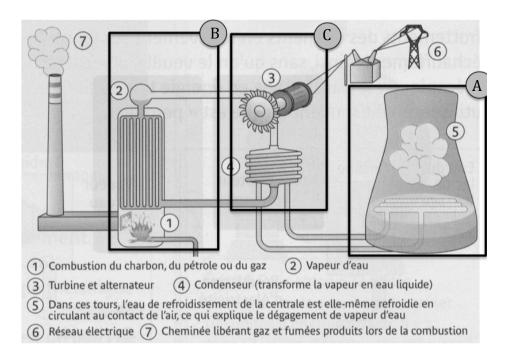
Question 2:

En présence de fumée, la lumière de la diode est diffusée par les particules de fumée et donc une partie de cette lumière parvient au détecteur (photodiode).

Question 3:

Proposition3: $2CH_4 + 3O_2 \rightarrow 4H_2O + 2CO$

Question 4:


On peut exclure tout de suite le montage 2 qui n'a pas de disque de gel sensible au monoxyde de carbone. Le montage 1 utilise une thermistance ce qui n'est pas approprié. Le montage 3 utilise une photo-résistance dont la résistance chute brutalement avec l'éclairage. Le montage 3 est donc approprié puisqu'en cas de présence de monoxyde de carbone, l'éclairement diminue et donc la résistance augmente ce qui déclenche le signal.

2017 PHY GEN centrale thermique

Question 1:

Nom de la centrale	Source(s) d'énergie utilisée	Source d'énergie renouvelable ou non ?	Dégage ou ne dégage pas de fumées lors de son utilisation?
Thermique à flamme	Charbon, pétrole ou gaz	Non renouvelable	Dégage de la fumée
Géothermique	Chaleur de la Terre	Renouvelable	Ne degage pas de fume (juste un nuage)

Question 2:

Question 3a:

Le gaz à effet de serre produit lors de cette transformation est le dioxyde de carbone (CO₂).

Question 3b1:

Pour brûler une molécule de méthane, il faut 2 molécules de dioxygène donc pour brûler 6 x 10^{22} molécules de méthane il faut $12 \times 10^{22} = 1,2 \times 10^{23}$ molécules de dioxygène.

Question 3b2:

La combustion d'une molécule de méthane produit une molécule de dioxyde de carbone donc la combustion de 6×10^{22} molécules de méthane produit 6×10^{22} molécules de dioxyde de carbone.

Question 4a:

On a E=Pxt donc P=E/t

Avec P la puissance en MW

E l'énergie en MWh = 7 500 000 MWh

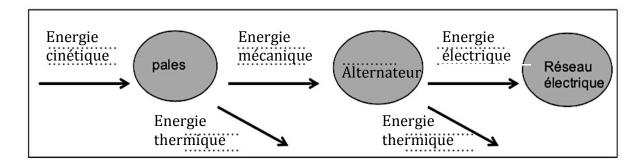
t le temps en h = 6820 h

Donc P = 7 500 000 / 6820 = 1100 MW

On retrouve bien la puissance d'une centrale thermique à flamme.

Question 4b:

Les centrales géothermiques :


- ont une puissance équivalente à celle des centrales thermiques à flamme
- n'utilise pas d'énergies fossiles
- ne produisent pas de gaz à effet de serre

2017 PHY GEN énergies renouvelables

Question 1:

Energie renouvelable	Source d'énergie
Energie de biomasse	végétaux
Energie hydraulique	mouvements de l'eau
Energie éolienne	mouvement de l'air (vent)
Energie solaire	lumière du Soleil
Energie géothermique	chaleur de la Terre

Question 2:

Question 3a:

La formule donnant l'énergie cinétique est $E_c = \frac{1}{2} \text{ mv}^2$

Donc lorsque la vitesse est multipliée par 3, l'énergie cinétique est multipliée par 9. Calculs :

Pour m = 1kg et v = 3m/s on a $E_c = \frac{1}{2} \times 1 \times 3^2 = \frac{4,5J}{2}$

Pour m = 1kg et v = 9m/s on a $E_c = \frac{1}{2} \times 1 \times 9^2 = \frac{40,5J}{(=4,5 \times 9)}$

Question 3b:

Pour calculer le pourcentage de conversion d'énergie cinétique en énergie mécanique il faut diviser l'énergie mécanique produite par l'énergie cinétique reçue et multiplier par 100 :

% = (10 510 / 17 530) x 100 = 60%

Donc les données fournies confirment l'affirmation du physicien allemand Betz.

Question 4a:

On doit diviser la consommation annuelle française par la production d'une éolienne et multiplier par 24 hectares :

Surface= $(478\ 200\ 000\ /\ 4\ 030)\ x\ 24 = 2\ 847\ 841\ hectares$ soit environ 3 millions d'hectares ce qui fait 30 000 km². Sachant que la superficie de la France est de 650 000 km², cela représente environ 5% de la surface de la France (un département français), c'est beaucoup surtout si on exclue les villes, les montagnes, les réserves naturelles, les champs...

Question 4b:

L'énergie éolienne est une énergie intermittente et comme on ne peut pas stocker l'électricité, cela ne peut donc pas être la seule source d'énergie (que ferait-on les jours sans vent ?).

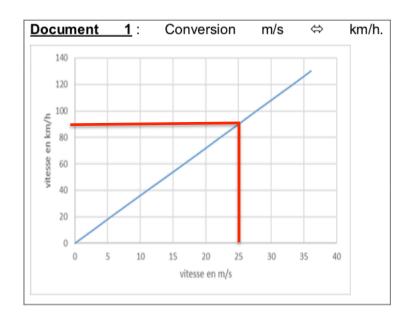
Une éolienne génère peu d'énergie, pour satisfaire les besoins du pays avec seulement cette ressource, il faudrait installer des quantités phénoménales d'éoliennes.

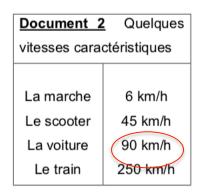
2017 PHY GEN saut à ski

Question 1.1:

Le mouvement est rectiligne (la trajectoire est une droite) entre les points A et B.

Question 1.2.1:


AU départ le skieur est immobile donc sa vitesse est nulle donc son énergie cinétique est nulle.


Question 1.2.2:

Entre le point A et le point C, le skieur descend donc son énergie potentielle diminue.

Question 1.3:

Voir exploitation des documents page suivante. On voit sur le doc 1 que 25 m/s = 90 km/h ce qui correspond (doc 2) à la vitesse d'une voiture.

Question 2:

Il y a modification de l'espèce chimique c'est donc une réaction chimique.

Question 3:

Document 3 : Extrait de la règlementation de la FIS.			
Valeur minimale du poids du skieur à respecter en fonction de sa taille.			
Taille du sauteur (cm)	Poids minimal du sauteur (P en Newton)		
160	529 = 529 / 9,8 = 54 kg		
170	598 = 598 / 9,8 = 61 kg		
180	666 = 666 / 9,8 = 68 kg		
190	745 = 745 / 9,8 = 76 kg		

<u>Document 4</u> : Résultats des mesures effectuées par les juges avant l'épreuve.		
Sauteur	Taille (cm)	Masse (<i>m</i> en kg)
Louis	180	68,1
Arthur	170	60,8

On constate que Louis est un peu trop lourd, c'est donc lui qui a été exclu.

2017 PHY GEN voyage en mer

Question 1.1:

Na⁺ et Cl⁻ sont des ions (espèces chimiques chargées).

Question 1.2:

Pour mettre en évidence les ions chlorure dans l'eau de mer il faut mettre un peu d'eau de mer dans un tube à essais et verser quelques gouttes de nitrate d'argent. Il se formera un précipité blanc qui noircira la lumière.

Question 2.1:

1 : énergie cinétique2 : énergie électrique

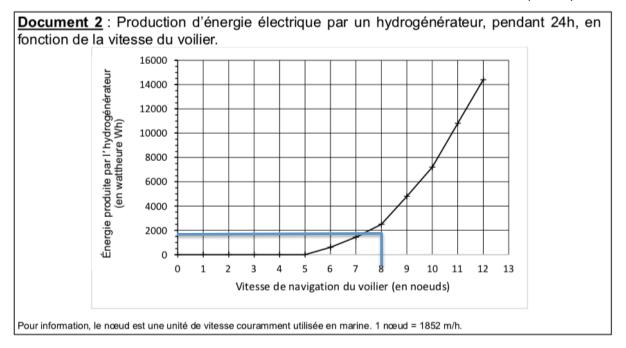
3 : énergie thermique

Question 2.2:

Le document 2 nous montre qu'à une vitesse inférieure à 5 nœuds il n'y a pas de production d'énergie. L'hydrogénérateur produit de l'énergie pour une vitesse supérieure à 5 nœuds.

Question 2.3:

On a E₁=Pxt


Avec P = 20W (données du doc 3)

t = 12 h

Donc $E_1 = 20 \times 12 = 240 \text{ Wh}$

Question 3:

La consommation sur 24h du voilier est E = 2200 + 60 + 240 = 2500Wh (doc 3).

Le doc 2 nous montre que la vitesse du voilier doit être de <u>8 nœuds</u> pour assurer une production électrique de 2500Wh sur 24h.

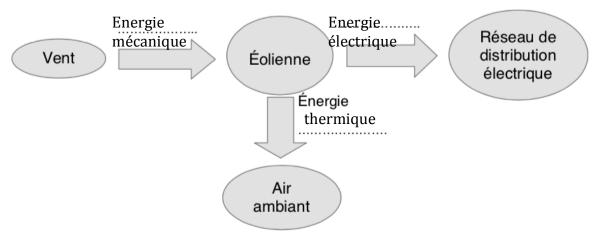
2017 PHY PRO éolienne

Question 1.1:

La source d'énergie d'une éolienne est le vent.

Question 1.2:

L'utilisation d'une éolienne pour la production d'énergie électrique présente plusieurs intérêts :


- exploitation d'une énergie renouvelable (le vent)
- n'utilise pas d'énergies fossiles
- ne produit pas de gaz à effet de serre

Question 1.3:

D'autres sources d'énergie utilisées pour la production d'énergie électrique :

- mouvement de l'eau (barrages, usines marée motrice)
- chaleur de la Terre
- lumière du soleil (centrales solaires)
- biomasse (production de gaz par décomposition de végétaux, production d'agroéthanol...)
- combustion de pétrole, charbon, gaz
- réaction nucléaire (dans les centrales nucléaires : utilisation d'uranium)

Question 1.4:

Question 1.5:

La partie de l'éolienne qui convertit l'énergie mécanique en énergie électrique est l'alternateur.

Question 1.6:

☐ B) Si l'énergie mécanique absorbée par l'éolienne a pour valeur : 100 kWh, alors celle de l'énergie électrique obtenue est égale à : 35 kWh

Question 2.1:

L'unité de la puissance électrique est le kilowatt (kW).

Question 2.2:

On a E=Pxt donc P=E/t

Avec E= 90 000 kWh et t=24h

Donc P=90 000 / 24 = 3750kW

La puissance nécessaire est supérieure à celle d'une éolienne terrestre mais inférieure à celle d'une éolienne offshore. Une éolienne offshore serait assez puissante pour satisfaire les besoins de la commune. Malheureusement, on ne peut

pas stocker cette énergie et une éolienne ne produit que lorsqu'il y a du vent. Une éolienne, quelque soit sa puissance ne peut pas être la seule source d'énergie électrique d'une commune.

2017 PHY PRO laser

Question 1:

Dans l'air, la lumière d'un laser se propage en ligne droite.

Question 2:

Lors de l'utilisation d'un laser, il est indispensable de protéger en priorité les yeux car la rétine est très fragile et ne se répare pas.

Question 3:

Lorsque la lumière provoque une élévation de température, il y a eu conversion de l'énergie lumineuse en <u>énergie thermique</u>.

Dans le cas des ondes de choc, il y a eu conversion en énergie mécanique.

Question 4:

Le trajet de la lumière est un aller-retour donc <u>L=2D</u>

Question 5:

On a v=D/t donc D=vxt Avec v = 299 792 et t = 2,4/2 = 1,2 s Donc D = 299 792 x 1,2 = 359 750 km

Question 6:

On constate que la valeur trouvée à la question 5 est inférieure d'environ 24000km à la valeur moyenne donnée dans le tableau. On peut en conclure que la mesure effectuée par l'observatoire n'est pas assez précise.

2017 PHY GEN production énergie

Question 1:

La puissance électrique s'exprime en watts (W). On peut lire sur l'étiquette du document la puissance du thermoplongeur : <u>240 W</u>

Question 2:

On a E=Pxt

Avec P = 240W et t=2min=120 s

Donc E = 240 x 120= 28 800 J

L'énergie consommée par le thermoplongeur est de 28 800 J.

Question 3:

Question 4:

La quantité d'eau à chauffer :

- a. doit être identique pour les deux réchauds.
- b. pout ôtre différente.

La température initiale de l'eau à chauffer :

- c. doit être identique pour les deux réchauds.
- d. peut être différente.

La prise en compte de la durée du chauffage :

- e. est nécessaire.
- f. n'est pas nécessaire.

Le récipient contenant de l'eau :

- g. doit être le même pour les deux réchauds.
- h. peut être différent.

Question 5:

Il faut prendre deux récipients identiques (deux casseroles), introduire la même quantité d'eau à la même température. Chauffer en remuant et en relevant la température. On peut voir par exemple quel réchaud permet d'atteindre une certaine température en premier (80°C par exemple). Le premier sera le plus performant.

2018

2018 chimie GEN algues

Question 1.1.1:

Il y a 6 atomes d'oxygène dans cette molécule.

Question 1.1.2:

Il y a autant de protons que d'électrons dans un atome car il est électriquement neutre. Il y a donc 8 électrons dans un atome d'oxygène

Question 1.2:

Il y a conservation de la masse lors d'une dissolution (comme lors de toute transformation physique ou chimique) donc l'ajout de 8g d'alginate de sodium à 100g d'eau donne bien sûr 108g de solution.

Question 2:

Au congélateur, il se produit un changement d'état, c'est une transformation physique, les espèces chimiques ne sont pas modifiées.

Question 3.1:

Les réactifs sont les espèces qui réagissent (à gauche de la flèche dans l'équation bilan). Donc : $C_6H_7O_6^-$ et Ca^{2+} .

Question 3.2:

Lors de la transformation chimique, deux ions alginate réagissent avec un ion calcium pour former une molécule d'alginate de calcium.

Question 4:

On a P=mg

Avec g=9,8 N/kg

Pour calculer la masse :

On a M=m/V donc m = MxV

Avec $M = 1.1 \text{ g/cm}^3$

Pour calculer V:

On a $V = 4/3 \pi R^3$

Avec R = 1cm sur la feuille et donc 2 cm en réalité.

Donc V = $4/3 \pi x^{23} = 33,5 \text{ cm}^3$

Donc m = $33.5 \times 1.1 = 36.85g = 0.03685kg$ environ = 0.037 kg

Donc P = $9.8 \times 0.037 = 0.36 \text{ N}$

Le poids de la solution d'alginate contenue dans la bille est <u>d'environ 0,36 Newtons</u>.

2018 chimie GEN lait

Question 1:

La molécule de lactose est $C_{12}H_{22}O_{11}$ (doc 1) soit 12 atomes de carbone, 22 atomes d'hydrogène et 11 atomes d'oxygène.

Question 2:

La lait doit être conservé à froid car il ne rempli aucun des critère énoncés. En effet, son pH = 6,4 (supérieur à 4,5 et à 5,2) et son activité biologique = 0,99 ce qui est supérieur à 0,91 et 0,95. Les données citées sont issues du doc 1.

Question 3.1:

Dans un kilogramme de lait, il y a $87.5\%_{\text{massique}}$ d'eau soit 875g (information doc 1). Donc si on retire l'eau, il reste 1000 - 875 = 125 g.

Donc, avec 1kg de lait, on peut obtenir 125g de lait en poudre.

Question 3.2:

La masse volumique du lait est 1,032 kg/L donc 1L de lait a une masse supérieure à 1kg (1,032kg) donc avec un litre de lait, on obtient <u>plus que 125g</u> de lait en poudre $(125 \times 1,032 / 1 = 129g)$.

Question 4:

Lors de la coagulation, on amène le pH du lait écrémé à 4,6, cela permet d'obtenir le caillé et le lactosérum. On peut donc en conclure que le lactosérum a un pH de 4,6 ce qui est inférieur à 7 et donc acide.

Question 5:

Il faut faire un test au nitrate d'argent : on met un peu de lactosérum dans un tube à essais, on rajoute de l'eau jusqu'à obtenir une solution limpide, on ajoute quelques gouttes de nitrate d'argent, il doit se former un précipité blanc qui noircit à la lumière.

2018 chimie PRO CO₂

Question 1:

Le principal gaz à effet de serre est le dioxyde de carbone de formule CO₂.

Question 2:

H₂O est la formule chimique de l'eau.

Question 3:

L'acide carbonique de formule H₂CO₃ contient 2 atome d'hydrogène, 1 atome de carbone et 3 atome d'oxygène.

Question 4:

Une solution est acide si son pH est inférieur à 7, réponse 1.

Question 5:

L'ion responsable du caractère acide d'une solution est l'ion hydrogène de formule H⁺.

Question 6:

Si le pH passe de 8,2 à 7,8, il diminue, on peut donc parler d'acidification des océans.

Question 7.a:

Le véhicule consomme 4,3 L d'essence pour 100 km or pour 1 L d'essence consommé, il y a 2300g de dioxyde de carbone produit donc ce véhicule produit $2300 \times 4,3 = 9890g$ de dioxyde de carbone pour 100 km.

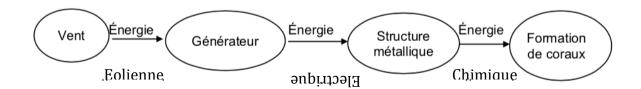
Donc pour 1 km, il produit 98,9 g de dioxyde de carbone.

Question 7.b:

D'après le doc 1, les véhicule qui produisent moins de 100g de CO₂ par km sont classe A. C'est le cas de ce véhicule.

2018 chimie PRO Coraux

Question 1:


Type d'alimentation	Source d'énergie	Type de source d'énergie
Eolienne	Vent	Renouvelable
Panneau solaire	Soleil	Renouvelable
Turbine marémotrice	Marée	Renouvelable
Groupe électrogène	Huile de coco	Renouvelable

A noter, aucune de ces sources d'énergie est 'non renouvelable'. L'énoncé peut prêter à confusion.

Question 2:

Le vent est une source d'énergie renouvelable car inépuisable à très long terme.

Question 3:

Question 4:

Le procédé permet d'augmenter le pH donc l'eau devient plus basique. Plus le pH est élevé et plus une solution est basique.

Question 5:

Pour mesurer le pH en laboratoire, on utilise un pH-mètre. Pour cela, il faut mettre la solution dans un bécher, introduire la sonde du pH-mètre et lire la mesure sur le cadran. Il faut ensuite rincer la sonde et la remettre dans sa solution de stockage. A noter, le papier pH et les indicateurs colorés permettent d'estimer le pH, pas de le mesurer.

Question 6:

L'aragonite a pour formule chimique CaCO₃ ce qui signifie qu'une molécule d'aragonite est constituée d'un atome de calcium (Ca), d'un atome de carbone (C) et de 3 atomes d'oxygène (O).

Question 7.1:

Les anions sont les ions négatifs : HO⁻, les ions hydroxyde. Les cations sont les ions positifs : Ca²⁺, les ions calcium.

Question 7.2:

Le gaz dissous dans l'eau permettant la formation de l'aragonite est le dioxyde de carbone (CO₂).

Question 7.3:

Le produit formé avec l'aragonite est l'eau (H₂O).

2018 chimie PRO pH

Question 1:

Pour mesurer le pH en laboratoire, on utilise un pH-mètre. Pour cela, il faut mettre la solution dans un bécher, introduire la sonde du pH-mètre et lire la mesure sur le cadran. Il faut ensuite rincer la sonde et la remettre dans sa solution de stockage. A noter, le papier pH et les indicateurs colorés permettent d'estimer le pH, pas de le mesurer.

Question 2:

Pour manipuler des produits corrosifs, il faut se protéger (gants, blouse, lunettes) et faire attention (plan de travail dégagé, petites quantités, cheveux attachés, être vigilant).

Question 3:

Le pH de la solution du flacon A est 6, c'est inférieur à 7, c'est donc une solution acide (très légèrement car c'est proche de 7).

Question 4:

Le test à la soude provoque un précipité bleu, il y a donc des ions cuivre II (Cu²⁺), le test au chlorure de baryum provoque un précipité blanc, il y a donc des ions sulfate (SO₄²⁻). C'est donc une solution de sulfate de cuivre (bouillie bordelaise).

A noter, cette solution est de toute facon reconnaissable à sa couleur bleue.

Question 5:

La puissance totale consommée par l'ensemble de ces appareils est la somme de chacune de leur puissance.

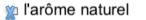
 $P = 2 \times 2000 + 130 + 3 \times 10 = 4160 \text{ W}$

Question 6:

On a P=UxI donc =P/U
Avec P = 4160W et U=230V
Donc I=4160/230=18A environ.

Question 7:

La valeur de l'intensité du courant électrique lorsque tous ces appareils fonctionnent ensemble est 18A, c'est inférieur à l'intensité de déclenchement du disjoncteur qui est 20A, il est donc possible d'utiliser ces appareils ensemble.

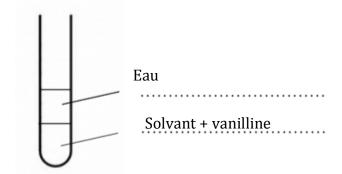

2018 chimie PRO vanille

Question 1:

La molécule de vanilline a pour formule chimique $C_8H_8O_3$ ce qui signifie qu'elle est composée de 8 atomes de carbone (C), de 8 atome d'hydrogène (H) et de 3 atomes d'oxygène (O).

Question 2:

Cette molécule est présente dans :



l'arôme artificiel

Question 3:

Il est précisé que l'arôme est très soluble dans le solvant et peu soluble dans l'eau. On retrouve donc l'arôme dans le solvant.

Question 4.1:

Question 4.2:

Le solvant ayant une masse volumique plus importante que l'eau, il sera au fond du tube et l'eau au-dessus.

Question 5:

A partir de 1kg (=1000g) de vanille, on récupère 20g d'arôme ce qui correspond à $20/1000 \times 100 = 2\%$.

On retrouve donc 2% de la masse d'une gousse ce qui semble correspondre à la valeur haute de la fourchette donnée. Cela part tout de même du principe qu'on arrive à extraire la totalité de l'arôme de la gousse.

2018 PHY GEN arrosage

Question 1.1:

La source d'énergie du dispositif numéro 2 est l'essence.

Question 1.2:

- 1 : la forme d'énergie reçue par un panneau photovoltaïque est de l'énergie solaire.
- 2 : l'énergie fournie par le panneau est de l'énergie électrique

Question 1.3:

Lors d'une combustion, il y a modification d'espèces chimiques (des molécules), c'est donc une réaction chimique.

Question 1.4:

	Avantages	Inconvénients
Panneau photovoltaïque	 pas d'émissions de polluants source d'énergie gratuite pas de bruit 	 ne fonctionne que lorsqu'il y a du soleil faible production
Pompe à essence	fonctionne quelque soit le tempspuissante	 émission de polluants bruit source d'énergie coûteuse

Question 2.1:

Lors du test à la soude il se forme un précipité bleu donc la solution contient des ions cuivre II (Cu²⁺).

Question 2.2:

Pour mettre en évidence les ions sulfate, il faut faire un test au chlorure de baryum. On met un peu de la solution à tester dans un tube à essais, on verse quelques gouttes de chlorure de baryum et il doit se former un précipité blanc.

Question 3.1:

Calcul du volume de terre : (30 cm = 0,3 m) (remarque, on peut trouver directement le résultat sur le graphique du document 2)

 $V = S \times h$

 $\overline{\text{Avec S}} = 20\text{m}^2 \text{ et h} = 0.3\text{m}$

Donc $V = 20 \times 0.3 = 6 \text{ m}^3$

Calcul de la masse :

On a $m = V \times M$

Avec $V = 6m^3$ et M = 1250 kg/m³

Donc $m = 6 \times 1250 = 7500 \text{ kg}$

Question 3.2:

Calcul du poids de la terre :

On a P=mxq

Avec m = 7500 kg et g = 9.8 N/kg

Donc P = 7500 x 9,8 = 73 500 N

Calcul du poids total

On a $\overline{P_{tot}} = P_{terre} + P_{gravier}$

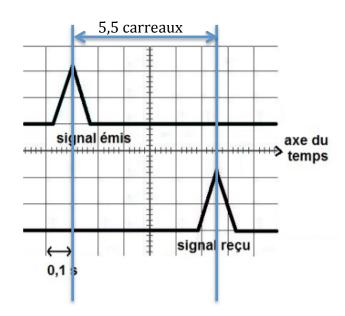
 $P_{tot} = 73500 + 35200 = 108700 N$

C'est inférieur à 120 000 N donc la structure peut supporter le poids de la terre végétale.

2018 PHY GEN communication sous marin

Questions 1 et 2:

Communication à bord du sous-marin : Signaux lumineux : alternance jour / nuit Signaux sonores : sirène en cas d'incendie.


Question 3:

- A. Le sous marin et la bouée communiquent entre oux par signal radio.
- B. Le sous-marin et la bouée communiquent entre eux par signal électrique.
- C. La bouée et le satellite communiquent entre eux par signal sonore.
- **D.** La bouée et le satellite communiquent entre eux par signal radio.
- E. Le bateau et le sous marin communiquent entre eux par signal électrique.

Question 4:

La fréquence du signal du sonar est de plusieurs centaines de kilohertz alors que les fréquences audibles sont comprises entre 20Hz et 20 000 Hz. On ne peut donc pas entendre le signal du sonar (bien trop aiguë).

Question 5:

Il y a 5,5 carreaux entre le signal émis et le signal reçu. Il s'est donc écoulé 5,5x0,1 = 0,55s

Le signal a parcouru le trajet sous-marin \rightarrow fond océanique \rightarrow sous-marin (il a fait un aller-retour). O n n'oublie pas que le sous-marin se situe à une profondeur de 300m. On a v=d/t donc d=vxt

Avec v= 1500 m/s et t=0,55/2=0,275s

Donc d = $1500 \times 0.275 = 412.5m$ (distance entre le sous-marin et le fond).

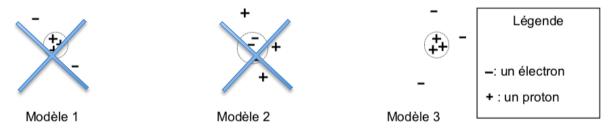
Donc le fond se situe 412,5 + 300 = 712,5m sous la surface de la mer.

2018 PHY GEN Gyropode

Question 1.1:

On constate que l'écartement entre deux positions successives de la poignée du gyropode reste constant donc la vitesse est constante.

Question 1.2:


La trajectoire est une droite et la vitesse est constante donc le gyropode a un mouvement rectiligne uniforme.

Question 2.1:

L'élément ayant comme numéro atomique 3 est le lithium (Li).

Question 2.2:

Un atome est électriquement neutre (il y a autant de protons (+) que d'électrons (-)), le numéro atomique correspond au nombre de protons (les charges +, dans le noyau).

Question 2.3:

1 : énergie chimique2 : énergie électrique

Question 2.4:

L'énergie dissipée est de l'énergie thermique.

Question 3.1.1:

Sur le document 2, on peut lire une puissance du moteur de 110W à 12 km/h.

Question 3.1.2:

La relation est E = Pxt avec E l'énergie, P la puissance et t le temps.

Question 3.1.3:

On a E = Pxt donc t = E/P

Avec E = 680 Wh et P = 110W

Donc t = 680 / 110 = 6,18h environ 6h11min

Donc à 12km/h, le gyropode peut fonctionner environ 6h.

Question 3.1.4:

On a v=d/t donc d = vxt

Avec v = 12 km/h et t = 6 h

Donc $d = 12 \times 6 = 72 \text{ km}$

Question 3.2:

Sur le doc 2 on lit que la puissance à 24 km/h est 280W ce qui est plus que deux fois plus qu'à 12 km/h donc le moteur consommera plus que deux fois plus d'énergie pour aller deux fois plus vite et donc l'utilisateur pourra parcourir une distance inférieure à celle qu'il peut parcourir à 12 km/h.

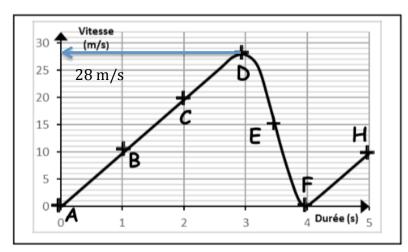
2018 PHY GEN saut élastique

Question 1.1:

La phase 1 correspond à une augmentation de la vitesse, elle s'étend de A à D.

Question 1.2:

Au point F, la vitesse est nulle, l'élastique est tendu au maximum (phase 3), le sauteur a fini sa chute, il va ensuite remonter.


Question 1.3:

La direction du poids est verticale, le sens, vers le bas (vers le centre de la Terre).

Question 2.1:

Lors de la phase 1 du saut, le sauteur converti son énergie potentielle en énergie cinétique (il chute, il est donc de moins en moins haut et va de plus en plus vite).

Question 2.2:

On peut lire sur le graphique que la vitesse maximale est 28 m/s (soit $28 \times 3.6 = \text{environ } 100 \text{ km/h}$)

Question 2.3:

On a $E_c = \frac{1}{2} \text{ mv}^2$ Avec m = 78 kg et v = 28 m/s Donc $E_c = \frac{1}{2} \times 78 \times 28^2 = 30576 \text{J}$

L'énergie cinétique du sauteur est de l'ordre de 30 000J.

Question 2.4:

On constate que l'énergie cinétique maximale du sauteur correspond à celle d'une moto avec un motard à 65 km/h. C'est beaucoup d'énergie, il faut donc la dissiper pour ne pas se blesser. C'est le rôle de l'élastique. L'énergie nécessaire à sa déformation permet de dissiper l'énergie cinétique du sauteur.

Question 3:

L'adrénaline : C₉H₁₃O₃N est une molécule composée de 9 atomes de carbone (C), 13 atomes d'hydrogène (H), 3 atomes d'oxygène (O) et d'un atome d'azote (N).

Question 4:

On a P=mg Avec m = 78kg et g=9,8 N/kg Donc P = 78 x 9,8 = 764,4N

Le poids du sauteur est environ 765N, il faut donc un élastique modèle M (de 650N à 950N).

La hauteur sous le pont est 103m, on retire 10m pour la sécurité, cela laisse 93m. Il faut donc un élastique mesurant 93m/3 = 31m maximum.

Le choix le plus approprié est donc un <u>élastique modèle M de 30m.</u>

2018 PHY GEN sujet 0 chronophotographie

Question 1.a:

Phase 1 : 7 intervalles donc 7 x 125 = 875 msPhase 2 : 7 intervalles donc 7 x 125 = 875 ms

Question 1.b:

875 + 875 = 1750 ms = 1,75 s

Question 2.a:

Dans la phase 1, la vitesse décroit et dans la phase 2 et augmente.

Question 2.b:

Un mouvement n'ayant pas une vitesse constante est un mouvement accéléré. C'est le cas ici dans les deux phases.

Question 2.c:

La vitesse est 12,5m/s il faut donc une flèche de 12,5/5 = 2,5 cm.

Question 3.a:

Au sommet de la courbe la snowboardeuse est au plus haut, son énergie potentielle est donc maximale. Pour gagner de l'énergie potentielle elle a converti de l'énergie cinétique donc si son énergie potentielle est maximale alors sont énergie cinétique est minimale.

Question 3.b:

Durant la phase 2, elle converti son énergie potentielle en énergie cinétique.

Question 4.a:

La formule chimique de l'eau est H₂O.

La paraffine $C_{31}H_{64}$ est composée de 31 atomes de carbone (C) et de 64 atomes d'hydrogène (H).

Question 4.b:

Affirmation A: vraie, affirmation B: fausse, affirmation C: vraie

2018 PHY GEN voiture hybride

Question 1:

Le moteur à combustion utilise comme source d'énergie de l'essence ou du fuel.

Question 2:

A : énergie mécanique B : énergie électrique C : énergie mécanique D : énergie thermique

Question 3.1:

On a $E_c = \frac{1}{2} \text{ mv}^2$

Avec m = 1300 kg et v = 50 km/h = 13,9 m/s environ Donc Ec = $\frac{1}{2}$ x 1300 x 13,9² = 125 386 J = environ 125 kJ

Question 3.2:

Energie récupérée lors d'un freinage :

60% de 125 kJ = 75 kJ

Nombre de freinages nécessaires :

4680 / 75 = 62,4

Il faudra donc une soixantaine de freinages pour recharger la batterie.

Question 4:

Il faut beaucoup de freinages pour recharger la batterie, la conduite en ville génère plus de freinages que la conduite sur voie rapide. La voiture hybride se rechargera plus en ville.

2018 PHY GEN voiture

Question 1.1.1:

Les formules chimiques des réactifs sont C₇H₁₆ et O₂.

Question 1.1.2:

Les réactifs sont constitués de carbone (C), d'hydrogène (H) et d'oxygène (O).

Question 1.1.3:

Les atomes du dioxygène s'associent avec les atomes de carbone pour former du dioxyde de carbone et avec les atomes d'hydrogène pour former de l'eau.

Question 1.2:

La combustion dans les moteurs thermiques génère du dioxyde de carbone qui est un gaz à effet de serre. D'autres gaz polluants sont également libérés.

Question 1.3:

Il y a conservation de la masse lors d'une réaction chimique ce qui signifie que la masse des réactifs est égale à la masse des produits. On doit donc avoir :

$$m = m_1 + m_2 - m' = 50 + 176 - 72 = 154 g$$

Question 2:

E₁ : énergie électrique

E₂ : énergie mécanique (ou cinétique si on tient compte des choix proposés).

Question 3:

Trajet de 500 km au moins donc cela élimine le véhicule 4.

Budget 25000 euros cela élimine le véhicule 5.

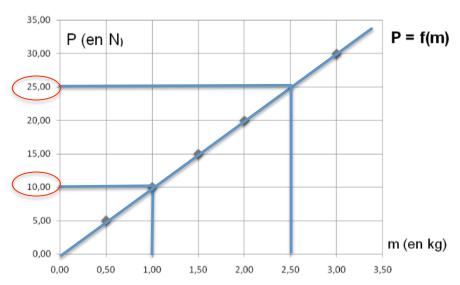
Il est sensible aux questions environnementales donc cela penche en faveur du véhicule 3 car c'est lui qui a les plus faibles émissions de CO₂ et d'oxydes d'azote.

2018 PHY PRO poids

Question 1:

Grandeur physique	Unité (nom et symbole)	Nom de l'appareil de mesure de cette grandeur
Poids (noté : P)	Newton	Dynamomètre
Masse (notée : m)	kilogramme	Balance

Question 2.1:


☐ La masse d'un objet varie en fonction du lieu.

La masse d'un objet ne varie pas en fonction du lieu.

Le poids d'un objet varie en fonction du lieu.

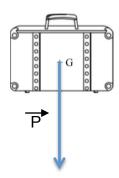
☐ Le poids d'un objet ne varie pas en fonction du lieu.

Question 2.2:

Le poids d'un objet de <u>1 kg est 10N</u> et celui d'un objet de <u>2,5 kg est 25N</u>.

Question 2.3:

La courbe du poids en fonction de la masse est une droite passant par l'origine donc il y a une relation de proportionnalité entre la masse et le poids.


Lorsqu'on multiplie la masse par 2,5, on constate que le poids est lui aussi multiplié par 2,5.

Question 2.4:

Le coefficient de proportionnalité est le coefficient directeur de la droite. On peut le calculer car on a P = mg et donc g = P/m avec, par exemple P = 25N et m = 2,5 kg donc g = 25/2,5 = 10 N/kg

Question 2.5:

Il faut faire une flèche verticale, vers le bas de 3 cm de long. Son point d'application étant le centre de gravité de la valise.

Question 3:

On a P = mg donc m = P/g

Avec P = 240N et g = 10N/kg

Donc m = 240 / 10 = 24 kg

Sa valise a une masse supérieure à 20 kg, il devra donc payer un supplément.

Question 4:

On a P=mg avec m = 15kg et :

Sur Terre $g_{Terre} = 10 \text{ N/kg}$

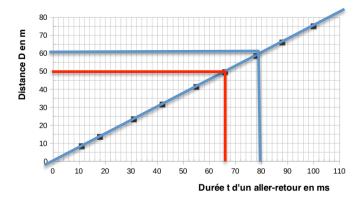
Donc le poids sur Terre est P_{Terre} =15 x 10 = 150 N

Sur la Lune $g_{Lune} = 1,6 \text{ N/kg}$

Donc le poids sur la Lune est $P_{Lune} = 15 \times 1,6 = 24 \text{ N}$

Le poids est donc bien inférieur sur la Lune.

2018 PHY PRO sonar


Question 1:

Le poids est une force et s'exprime en newton (N). "29 500 tonnes" correspond à une masse.

Question 2.1:

☐ Le pêcheur n'entend pas les ultrasons car leur fréquence est trop grande

Question 2.2:

La courbe obtenue est une droite passant par l'origine donc il y a un rapport de proportionnalité entre le temps et la distance.

Question 2.3:

Voir courbe ci-dessus, pour un temps A/R de 80ms, on trouve une distance de <u>60m</u> ce qui est supérieur à la distance maximale de 50m.

Question 2.4:

En rouge sur la courbe. Pour une distance de 50m, on lit un temps de 66ms.

Question 3.1:

Sur le document fourni, on constate que la couleur grise correspond à un pH=8.

Question 3.2:

Un pH supérieur à 7 correspond à une solution basique.

Question 3.3:

L'attaque par un acide est une réaction avec les ions hydrogène (H⁺). Il s'agit donc de l'équation bilan :

$$\square$$
 CaCO₃ + 2H⁺ \rightarrow H₂O + CO₂ + Ca²⁺

2018 PHY PRO Thomas Pesquet

Question 1:

L'air est principalement composée de diazote à environ 80% (78%) et de dioxygène à environ 20% (21%, les autres gaz constituent 1%).

Question 2:

$$\square$$
 2H₂ + O₂ \rightarrow 2H₂O

Question 3:

L'étoile se trouvant à 4,5 années lumière (AL) sa lumière met 4,5 ans à nous parvenir, on la voit donc telle qu'elle était il y a 4,5 ans, depuis, elle pourrait avoir exploser.

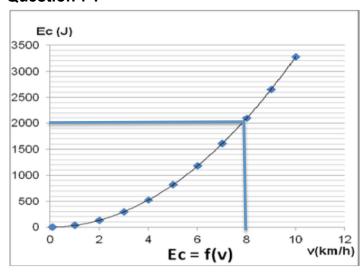
Question 4:

L'énergie du module Soyouz est de l'énergie potentielle (due à la hauteur).

Question 5:

La force responsable de la chute est la force de gravitation (le poids).

Question 6:


On a $E_c = \frac{1}{2} \text{ mv}^2$

Avec m = 2000 kg et v = 1,4 m/s

Donc Ec = $\frac{1}{2}$ x 2000 x 1, $\frac{4^2}{1}$ = 1960 J

L'énergie cinétique est donc proche de 2000J.

Question 7:

On peu lire sur la courbe qu'une petite voiture ayant une énergie cinétique de 2000J roule à 8 km/h.

Question 8:

8 km/h pour une voiture est une vitesse très faible, la comparaison de l'astronaute est donc un peu exagérée.

2019

2019 chimie GEN savon

Question 1.1.1:

C₁₈H₃₃O₂ est une espèce chimique chargée, c'est donc un ion.

C₃H₈O₃ est une molécule.

Question 1.1.2:

Dans la molécule $C_{57}H_{104}O_6$, il y a 57 atomes de carbone (C), 104 atomes d'hydrogène (H) et 6 atomes d'oxygène (O).

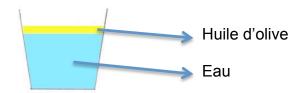
Question 1.2.1:

Une solution basique a un pH supérieur à 7 (proposition A).

Question 1.2.2:

L'ion responsable du caractère basique d'une solution est l'ion hydroxyde (HO⁻).

Question 1.2.3:


Une solution d'hydroxyde de sodium est une solution corrosive, il faut donc :

- porter des gants
- porter des lunettes de protection
- porter une blouse en coton
- être vigilant, s'attacher les cheveux s'ils sont longs, utiliser de petites quantités...

Question 2.1:

Un mouvement circulaire uniforme est un mouvement dont la trajectoire est un cercle et la vitesse est constante.

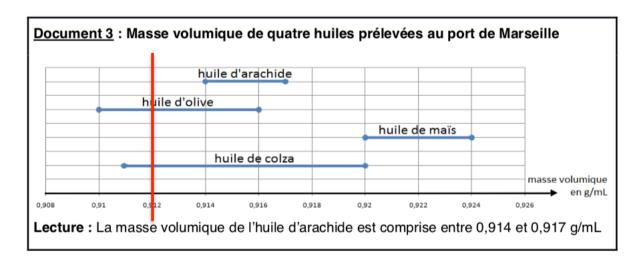
Question 2.2:

Titre: eau / huile d'olive après repos.

L'huile ne se mélange pas à l'eau, l'huile étant plus légère, elle constitue la phase supérieure.

Question 2.3:

Sur la courbe, on constate qu'un âne entraine la meule à la vitesse de 4 tours par minute, cela est moins rapide qu'un moteur (6 tours par minute).


Question 3:

On a M = m/V

Avec m = 26,7 - 15,3 = 11,4g

V = 12,5 ml

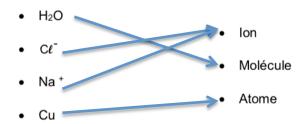
Donc M = 11,4 / 12,5 = 0,912 g/ml

On constate que la masse volumique de l'huile peut correspondre soit à l'huile d'olive soit à l'huile de colza. On ne peut donc pas conclure.

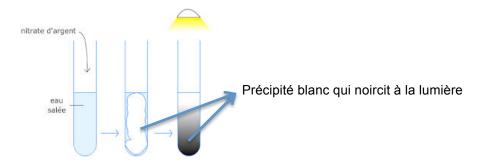
2019 chimie PRO cuisson pates

Question 1:

	Pour l'eau liquide	Pour la vapeur d'eau
Les molécules sont rapprochées les unes des autres.	Oui	non
Les molécules sont animées de mouvements désordonnés.	Oui	oui


Question 2.1:

2040g.

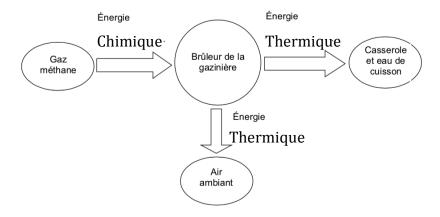

Question 2.2:

Il y a conservation de la masse lors d'une dissolution donc la masse d'eau salée est égale à la masse d'eau plus la masse de sel.

Question 2.3:

Question 2.4:

Titre : mise en évidence des ions chlorure dans l'eau salée

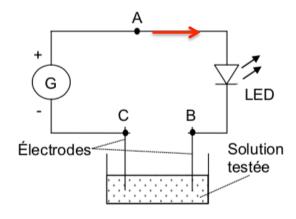

Question 3.1:

$$CH_4 + 2 O_2 \rightarrow CO_2 + 2 H_2O$$

Question 3.2:

Lors de cette transformation, il y a modification d'espèces chimiques, c'est donc une réaction chimique.

Question 3.3:


2019 chimie PRO enquête policière

Question 1.1:

La LED permet de savoir si la solution est conductrice ou pas. Si la LED est éclairée, un courant électrique circule et donc la solution est conductrice.

Question 1.2:

Le sens conventionnel du courant électrique est de la borne positive vers la borne négative.

Question 1.3:

Dans les fils, le courant électrique correspond à la circulation des électrons, particules négatives qui vont donc de la borne négative vers la borne positive.

Question 1.4.a:

On a un circuit en série donc $U_{AC} = U_{AB} + U_{BC}$ donc $U_{BC} = U_{AC} - U_{AB}$ $U_{BC} = 6 - 1,2 = 4,8V$

Question 1.4.b:

C'est la loi d'additivité des tensions dans un circuit en série.

Question 1.5:

L'inspecteur a une solution conductrice donc elle contient des ions or madame Blanc n'est pas en contact avec des substances ioniques, elle n'est donc probablement pas coupable.

Question 2.1:

Un précipité bleu lors d'un test à la soude permet de mettre en évidence la présence d'ions cuivre II (Cu²⁺).

Question 2.2:

Cu(OH) ₂ → + 2HO	$Cu^{2+}_{\cdots} + 2HO^{-} \rightarrow Cu(OH)_{2}$	Cu ²⁺ + Cu(Cl+i) ₂ →
-----------------------------	---	--

Question 3:

Seule madame Boisseau est en contact avec des ions cuivre II, elle est donc la plus susceptible d'être coupable.

2019 chimie PRO pH

Question 1.1:

- pH du sol du jardin du grand-père : 5
- pH du sol du jardin des parents : 8

Question 1.2:

Le pH du sol du grand-père est inférieur à 7, il est donc acide.

Question 1.3:

Il obtient un précipité blanc lors de l'ajout de soude, le tableau nous permet de conclure qu'il y a des ions aluminium Al³⁺.

Question 1.4:

Une solution qui contient des ions hydroxyde HO est une solution basique.

Question 2.1:

Ce pictogramme signifie corrosif.

Question 2.2:

Pour manipuler une solution corrosive, il faut :

- porter des gants
- porter des lunettes de protection
- porter une blouse en coton
- être vigilant, s'attacher les cheveux s'ils sont longs, utiliser de petites quantités...

Question 2.3:

Le poids est une force, il s'exprime en newton, il parle en fait ici de la masse.

Question 2.4:

Il faut 10g par m^2 , il y a $20m^2$, il faut donc 200g, la cuillère dose 20g, il faut donc $\underline{10}$ cuillères.

Question 3:

Le sol doit être acide et contenir des ions aluminium Al³⁺.

2019 PHY GEN foot

Question 1.a:

Les qualités du PEBA :

- matériau peu dense
- matériau stable
- matériau très élastique

Question 1.b:

La molécule $C_{18}H_{34}O_3$ est constituée de 18 atomes de carbone (C), de 34 atomes d'hydrogène (H) et de 3 atomes d'oxygène (O).

Question 1.c:

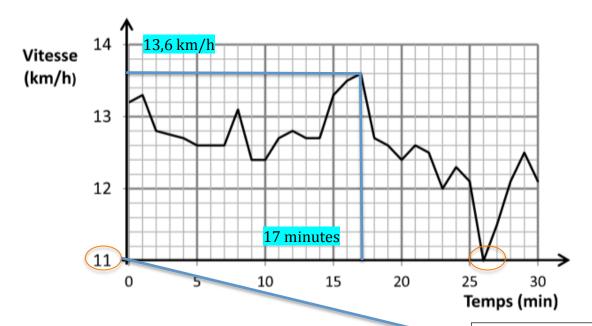
A : acide ricinoléique (huile de ricin)

B : Rilsan C : polyéther

Question 2.a:

1 : action du sol sur le ballon2 : action du pied sur le ballon3 : action de pesanteur sur le ballon

Question 2.b:


Action à distance

- action du sol sur le ballon ;
- action du pied sur le ballon ;
- action du ballon sur le sol.
- action de pesanteur sur le ballon ;
 action du ballon sur le pied ;
- action du pied sur le ballon , action du ballon sur

contact

Actions de

Question 3.a:

La vitesse maximale a été atteinte à 17 minutes.

Question 3.b:

A la 26ieme minute, la vitesse de 11 km/h. Elle n'est pas à l'arrêt.

Question 3.c:

Sa vitesse est comprise entre 11 et 13,6 km/h.

Remarque: il ne faut jamais faire une courbe comme celle-ci, l'origine c'est toujours zéro / zéro. Vous voyez, faire comme ici induit en erreur.

Question 4:

On a v=d/t donc t=d/v Avec d=48m et v=340m/s Donc t=48/340=0,14s

Le décalage est donc infime et ne perturbe pas le déroulement du jeu.

2019 PHY GEN masse volumique

Question 1:

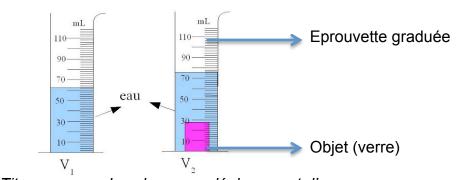
C₁₂H₁₈O₇ est une molécule constituée de 12 atomes de carbone (C), de 18 atomes d'hydrogène (H) et de 7 atomes d'oxygène (O).

Question 2:

On a M=m/V

Avec $\overline{m = 4.1}g$ et V = 3.1 mL

Donc M = 4,1/3,1 = 1,3 g/mL


La masse volumique d'un verre est généralement comprise entre 2,2 et 3,8 g/mL donc le CR39 a une masse volumique environ 2 à 3 fois plus faible.

Question 3:

Il faut prendre l'éprouvette la plus précise possible, il faut que le verre puisse rentrer dedans. Deux éprouvettes ont un diamètre intérieur supérieur à 30 mm : celle de 250mL et celle de 500 mL. Celle de 250 mL est plus précise (mais pas du tout assez, elle a une précision de 2 mL pour mesurer un volume de 3,1 mL).

Question 4:

On met un peu d'eau dans l'éprouvette graduée, on note le volume. On immerge totalement le verre. On note le nouveau volume. La différence de volume correspond au volume du verre.

<u>Titre</u>: mesure de volume par déplacement d'eau

Question 5:

Pour gagner en précision, il faut mesurer le volume total de plusieurs verres identiques.

2019 PHY GEN Métropole Glace

Question 1.a:

1 : électrons 2 : proton

3 : neutron

4 : noyau

Question 1.b:

Un atome est défini par son nombre de protons (qui correspond au numéro atomique), donc 8 pour l'oxygène (quelque soit l'isotope, c'est le nombre de neutrons qui diffère).

Question 2.a:

En 1910, il y avait 0,030% en volume de CO₂ dans l'atmosphère.

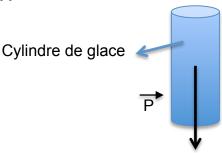
Question 2.b:

(En rouge)

0,037% ont été atteint vers 2002.

Question 2.c:

Entre 1810 et 1950 le pourcentage de CO_2 dans l'atmosphère est passé de 0,0285% à 0,031% soit une augmentation de ((0,031-0,0285)/0,0285)x100=9% environ. Entre 1950 et 2010 le pourcentage de CO_2 dans l'atmosphère est passé de 0,031% à 0,039% soit une augmentation de ((0,039-0,031)/0,031)x100=26% environ. On peut en conclure que l'augmentation de la proportion de CO_2 dans l'atmosphère s'accélère.


Question 2.d:

Il faut prolonger la courbe. Pour cela il faut faire des hypothèses. Soit on estime que les choses vont continuer à être de pire en pire et faire une courbe avec une pente de plus en plus forte, soit on fait l'hypothèse que l'évolution continue sur sa lancée (et on fait une droite dans le prolongement, ce qu'on a fait ici) soit on est optimiste et

on pense que les choses vont s'arranger et que l'augmentation va ralentir. Enfin, on peut être tout à fait utopiste et penser qu'on va faire des efforts énormes pour réduire la quantité de CO₂ dans l'atmosphère. A noter, à l'heure où je fait ce corrigé, nous sommes en 2020 et le pourcentage de CO₂ dans l'atmosphère est de 0,0415% ce qui prouve qu'en terme de modélisation de l'évolution il est plus réaliste de retenir les prévisions dites pessimistes.

Donc si on prolonge la courbe à l'aide d'une droite (voir pointillés sur la courbe) on trouve comme valeur pour 2020 : <u>0,0415%</u>. On peut constater qu'on trouve bien la valeur mesurée.

Question 3.a:

On fait une flèche de 2,36cm, verticale, vers le bas ayant pour point d'application le centre de gravité du cylindre.

Question 3.b:

On a P=mg donc m=P/g Avec g = 9,82 N/kg et P = 236N Donc m = 236 / 9,82 = 24kg

2019 PHY GEN parachute

Question 1:

La vitesse augmente puis diminue, cela correspond à la proposition a : le mouvement est accéléré puis ralenti.

Question 2:

Sur le document 2, on voit que les positions successives s'éloignent puis se rapprochent ce qui correspond à une accélération puis un ralentissement.

Question 3:

Poids: action à distance.

Frottements de l'air : action de contact.

Question 4:

Sur le document 1, on voit que la vitesse maximale est atteinte vers 50s ce qui correspond à la position 27,8 km d'altitude.

On peut donc exploiter la chronophotographie en faisant l'hypothèse que la vitesse à t=50s est égale à la vitesse moyenne entre t=40s et t=60s.

On a v=d/t

Avec d=7,3km et t=20s

Donc v=7,3/20 = 0,365 km/s = 365 m/s (=1314 km/h)

Sa vitesse maximale est donc proche de 370 m/s.

2019 PHY PRO Ironman

Question 1:

Distance = 3800m + 180 km + 42 km = 3.8 km + 180 km + 42 km = 225.8 km

Question 2:

On a v=d/t

Avec d = 225,8 km et t = 8h

Donc v=225,8/8 = 28,225 km/h

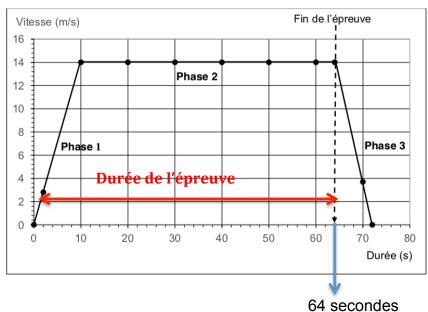
Question 3:

La trajectoire de la valve vue par un spectateur correspond à la trajectoire C (c'est une cycloïde).

Question 4:

La vitamine C est une molécule ayant pour formule $C_6H_8O_6$ ce qui signifie qu'elle est composée de 6 atomes de carbone (C), de 8 atomes d'hydrogène (H) et de 6 atomes d'oxygène (O).

Question 5:


Pour 250 mL, il faut un comprimé donc pour 1L (=4 x 250 mL) il faut 4 comprimés.

Question 6:

- broyer 4 comprimés avec le mortier et le pilon
- verser la poudre dans le bécher
- verser de l'eau dans le bécher (avec la pissette d'eau minérale)
- agiter avec l'agitateur jusqu'à totale dissolution
- verser la solution dans la fiole jaugée en se servant de l'entonnoir
- compléter à 1L (jusqu'au trait de jauge) avec la pissette

2019 PHY PRO vélo et shampoing

Question 1:

L'épreuve dure 64 secondes

Question 2:

On a v=d/t

Avec d = 500m et t = 64s

Donc v = $500 / 64 = 7.8125 \text{ m/s} = \text{environ } \frac{7.8 \text{ m/s}}{2.000 \text{ m/s}}$

A noter : 7.8 m/s = 7.8 x 3.6 = environ 28 km/h

Question 3:

La vitesse diminue, donc il ralenti. A noter, on doit parler de mouvement uniforme lorsque la vitesse est constante et de mouvement accéléré quand la vitesse varie. Donc, il ralenti mais c'est un mouvement accéléré.

Question 4:

Le shampoing est un produit corrosif il peut donc provoquer des brûlures de la peau et de graves lésions oculaires (= abimer l'œil).

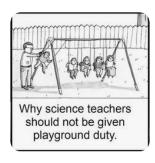
Question 5:

Pour manipuler un produit corrosif, il faut :

- porter gants, blouse et lunettes
- s'attacher les cheveux s'ils sont longs
- être vigilant
- utiliser de petites quantités

Question 6:

Le pH du shampoing est 3, cela est inférieur à 7, il est donc acide.


Question 7:

Pour vérifier le pH du shampoing :

- on peut utiliser du papier pH : on place un morceau de papier pH sur une coupelle en verre, on verse une goutte de shampoing dessus, on regarde la couleur obtenue et on la compare avec l'échelle colorimétrique indiquée sur l'emballage du papier pH
- on peut utiliser un pH-mètre : on verse du shampoing dans un récipient, on introduit le pH-mètre et on lit la mesure. Il faut ensuite rincer le pH-mètre et le plonger dans sa solution de stockage.

Question 8:

Une solution ayant un pH égal à 5 est moins corrosive qu'une solution ayant un pH égal à 3 (il y a 100 fois moins d'ions hydrogène). Cette solution est donc moins dangereuse.

