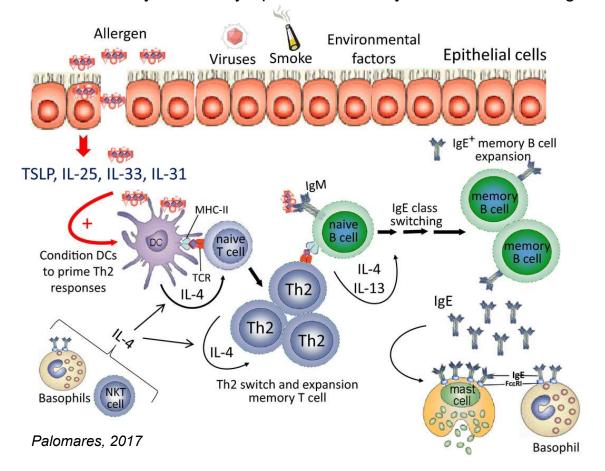


BIOLOGIE DE L'ALLERGIE

L. GARNIER/ R. PESCARMONA Laboratoire d'Immunologie Groupement Hospitalier Sud -Lyon

> DES/DESC Séminaire Hypersensibilité 7 janvier 2021


Objectifs

- □ Quels tests existe-t-il?
- □ Principes de ces tests
- □ Performances de ces tests
- Règles de prescription / Nomenclature
- Utilisation de ces tests en pratique

I. Physiopathologie de l'HSI de type I La réaction immédiate

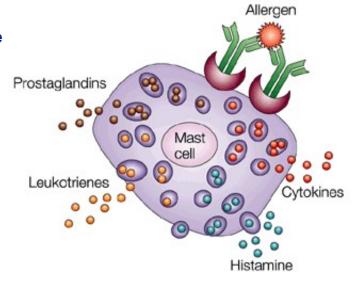
2

- 1ère rencontre avec l'allergène
 - Mise en route des réponses immunologiques de mémorisation
 - Collaboration des LyT et des LyB pour induire la synthèse de l'immunoglobuline "E"

Récepteurs FcERI (forte affinité)

écepteurs

Récepteurs FcERII faible affinité) Mastocytes tissulaires Basophiles sanguins


Plaquettes
Eosinophiles
Cellules de Langerhans
Macrophages
Lymphocytes T

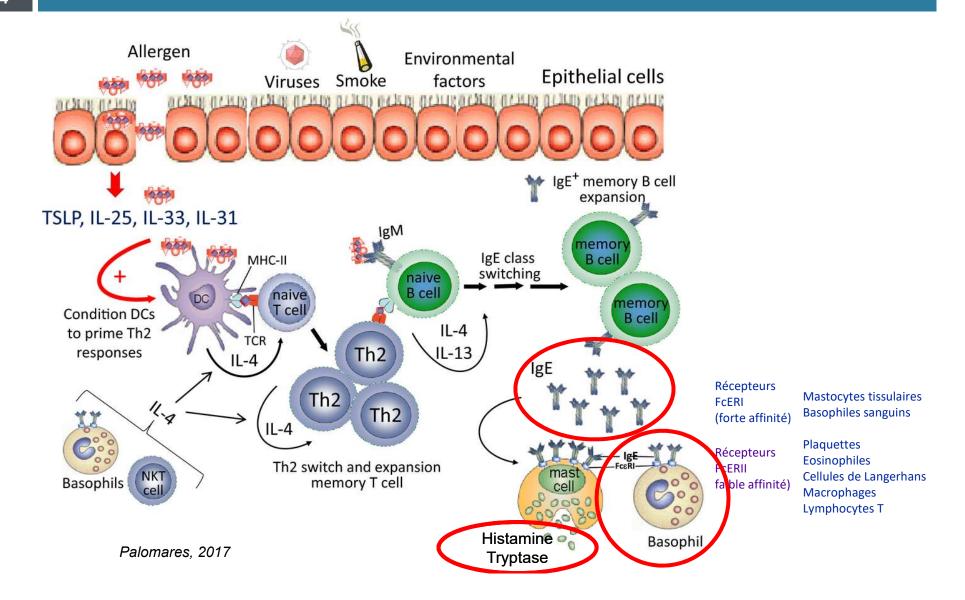
I. Physiopathologie de l'HSI de type I La réaction immédiate

Seconde rencontre

- Allergène immédiatement reconnu
- Réaction explosive
- Libération de nombreux médiateurs de la réponse allergique

Pénétration de l'antigène (2ème ou nième)

Nature Reviews | Immunology


Activation du mastocyte (+ autres cellules)

Libération des médiateurs :

- Histamine
- Leucotriènes
- Prostaglandines

.

I. Exploration biologique de l'HS de type I Quels tests existe-il?

Exploration de l'HSI: Tests biologiques utilisés

Tests sériques :

 Apport des allergènes moléculaires

Tests cellulaires:

Test d'activation des basophiles

Tests non spécifiques

IgE totales (hyperéosinophilie)

Marqueurs solubles dégranulés

Tryptase/Histamine (=>origine allergique d'une réaction ?)

Tests spécifiques

- Multiallergéniques (dépistage)
- Unitaire (identification)

IgE totales

7

- □ Ig la plus faiblement représentée dans le sérum (50-100 ng/L)
 - Exprimée en **UI** (1UI = 2,4 ng)

- Marqueur pas toujours spécifique/sensible :
 - 20% des sujets sains : concentration élevée
 - 20% des sujets allergiques : concentration normale

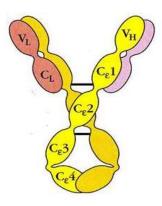


Table 1. Pathological states associated with increased levels of immunoglobulin E (IgE)

Pathological state associated with elevated IgE level	Examples of diseases	Type of inheritance	Gene defects
Worm infections	Helminthes, schistosomes, etc.	Polygenic	
Intracellular pathogens	Different species of <i>Leishmania</i> , <i>Plasmodium falciparum</i> , etc.	Polygenic	
Allergic diseases	Atopic asthma, atopic dermatitis, rhinitis, etc.	Polygenic (see Table 2)	
Autoimmune diseases	Bullous pemphigoid disease, some cases of hyperthyroid Graves' disease	?	?
Immunodeficiencies	Hyper-IgE syndrome (HIES)		
	HIES type 1	Autosomal dominant	STAT3 mutations (Holland et al., 2007; Minegishi et al., 2007)
	HIES type 2	Autosomal recessive	TYK2 (Minegishi et al., 2006), DOCK8 mutations (Engelhardt et al., 2009)
	Wiskott-Aldrich syndrome Omenn syndrome	X-linked recessive Autosomal recessive	WASP mutations (Derry, Ochs & Francke, 1994) RAG1 or RAG2 (Villa et al., 1998), DCLRE1C (Ege et al., 2005), IL-7R (Giliani et al., 2006), RMRP (Roifman et al., 2006), ZAP70 (Turul et al., 2009), ADA (Roifman et al., 2008), DNA ligase IV mutations (Grunebaum et al., 2008), IL2RG (Gruber et al., 2009)
	Comel-Netherton syndrome Immunodysregulation, polyendocrinopathy, enteropathy, X-linked (IPEX)	Autosomal recessive X-linked dominant	SPINK5 mutations (Chavanas et al., 2000) FOXP3 mutations (Wildin et al., 2001)
	Atypical complete DiGeorge syndrome	Autosomal dominant	22q11 hemizygosity (Driscoll, Budarf & Emanuel, 1992)
Tumours	Multiple myeloma, glioblastoma	?	?
Transplant rejection	Graft-versus-host disease	5	?

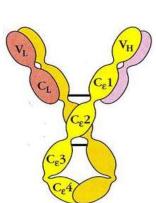
ADA, adenosine deaminase; DCLRE1C (ARTEMIS), DNA cross-link repair 1C; DOCK8, dedicator of cytokinesis 8; FOXP3, forkhead box P3; IL-7R, interleukin 7 receptor; IL2RG, interleukin 2 receptor, gamma; RAG, recombination activating gene; RMRP, RNA component of mitochondrial RNA processing endoribonuclease; SPINK5, serine peptidase inhibitor; STAT3, signal transducer and activator of transcription 3; TYK2, tyrosine kinase 2; WASP, Wiskott-Aldrich syndrome protein; ZAP70, zeta-chain (TCR) associated protein kinase.

IgE totales

BIOLOGIE MEDICALE

NOMENCLATURE DES ACTES

9

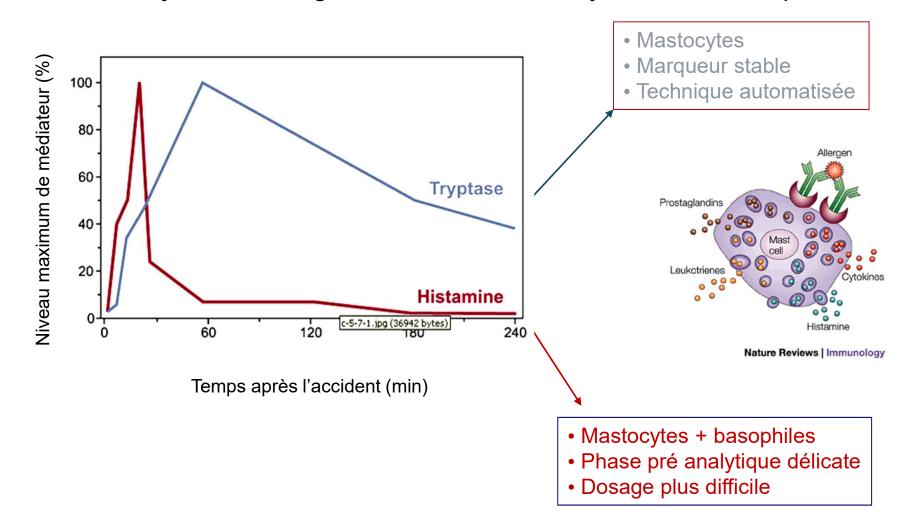

1 - IgE totales

Dosage des IgE totales sériques exclusivement, à l'exception des techniques utilisant des supports bandelettes (dipsticks) ou pipettes

Il ne s'agit pas d'un test de dépistage de l'allergie.

Les indications médicales du dosage des IgE totales sont limitées à la confirmatic diagnostic ou d'un suivi thérapeutique de :

- Polysensibilisations;
- Parasitoses : filarioses, schistosomiases, toxocarose, ascaridiose, hydatidose ;
- Urticaire chronique ;
- Dermatite atopique ;
- Aspergillose broncho-pulmonaire;
- Certains déficits immunitaires :
 - de l'enfant : syndrome de Wiskott-Aldrich ;
 - ou de l'adulte : syndrome de Job-Buckley.

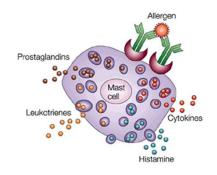


B

40


Médiateurs dégranulés : Tryptase et Histamine plasmatiques

Pour objectiver la dégranulation des mastocytes et des basophiles



Médiateurs dégranulés : Tryptase et Histamine plasmatiques

Pour objectiver la dégranulation des mastocytes et des basophiles

Temps après l'accident (min)

Nature Reviews | Immunology

Recommandations : Au minimum

Délai après le choc	15 – 30 minutes	1 à 2 heures	Tryptasémie de base > 6 heures
Tryptase		✓	✓

Aux HCL

Délai après le choc	15 – 30 minutes	1 à 2 heures	Tryptasémie de base > 6 heures
Tryptase	✓	✓	✓
Histamine	\checkmark	✓	

Médiateurs dégranulés : Tryptase et Histamine plasmatiques

Exemple de cinétique

	Temps 1	Temps 2	Temps 3
Délai après choc	10 minutes	1 à 2 heures	> 6 heures
Histamine (Val. réf. : < 10)	>100 nmol/L	20 nmol/L	
Tryptase (Val. réf. : < 11)	37.0 μg/L	24.3 μg/L	10.9 μg/L

12

Médiateurs dégranulés : Tryptase et Histamine plasmatiques

13

Exemple de cinétique

Délai après le choc	15 – 30 minutes	1 à 2 heures	Tryptasémie de base > 6 heures
Tryptase		10,9	

Que conclure?

Variation significative de la tryptase quand :

Délai après le choc	15 – 30 minutes	1 à 2 heures	Tryptasémie de base > 6 heures
Tryptase		10,9	4

-> dégranulation mastocytaire

Tryptase et pathologie mastocytaire

14

- L'alpha-tryptase, secrétée continuellement par les mastocytes est responsable du taux basal de tryptase sérique de chaque individu.
- □ Son dosage sérique permet une estimation de la masse mastocytaire totale.

-> Augmentation de la tryptase dans la mastocytose systémique

Dosage de tryptase à réaliser :

- chez tout patient allergique aux venins d'hyménoptères ayant fait une réaction systémique
- en cas de réactions d'hypersensibilité immédiate à répétition sans étiologie retrouvée.

Critère majeur	Infiltrat dense multifocal de mastocytes dans la moelle osseuse ou dans un autre organe extracutané, avec plus de 15 mastocytes par agrégat
Critères mineurs	Morphologie anormale des mastocytes médullaires ou d'un autre organe extracutané
	2. Mutation de c-KIT au codon 816
	3. Immunophénotypage des mastocytes médullaires exprimant le CD2 et/ou le CD25
	4. Taux de tryptase sérique > 20 ng/ml

*Le diagnostic positif nécessite la présence d'un critère majeur et d'un critère mineur ou de 3 critères mineurs. Le critère majeur est constitué par la présence d'agrégats de plus de 15 mastocytes anormaux au sein de la biopsie ostéo-médullaire ou de tout autre organe atteint en dehors de la peau.

Le taux de tryptase sérique doit être > 20 ng/ml en dehors d'une association à une autre hémopathie myéloïde. Un taux de tryptase sérique < 20 ng/ml est présent dans 20 à 30 % des cas de MS.

Tests spécifiques

□ IgE spécifiques (~ 600 tests)

Tests multiallergéniques

Tests unitaires

Différentes types d'allergènes

Allergènes inhalés Pneumallergènes

- Pollens
- Animaux
- Acariens
- Arthropodes
- Moisissures

Allergènes ingérés Trophallergènes

Allergènes injectés

- Médicaments
- Venins d'hyménoptères

Allergènes professionnels

L'Allergie : un langage codé...

16

- 1 code pour chaque allergène :
 - 1 lettre pour la catégorie
 - 1 chiffre

Lettre	Catégorie	Exemple
С	Médicament	c1: pénicilline
d	Acariens	d1 : D. pteronyssinus
е	Animaux	e1 : le chat
f	Aliments	f13 : l'arachide
g	Graminées	g3 : dactyle
i	Insecte	i1 : abeille
k	Professionnel	k82 : latex
m	Moisissures	m3 : Aspergillus
0	Divers	o1 : coton
р	Parasite	p1 : ascaris
t	Arbres	t3 : boulot
W	Herbacées	w1 : ambroisie

Les techniques utilisées

Ш

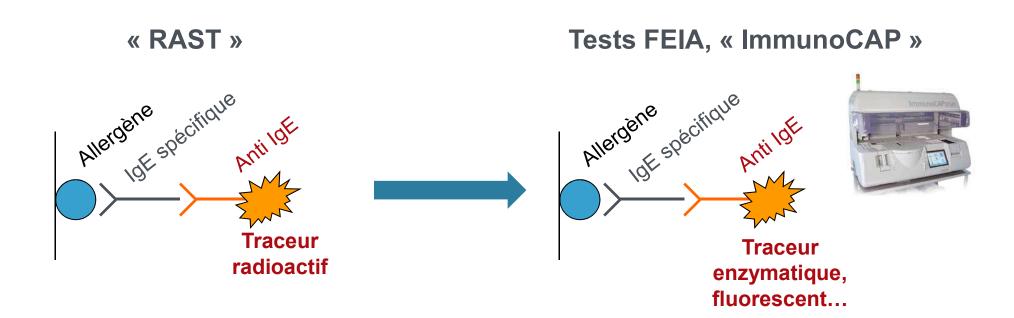
Techniques manuelles:

- Histamine

Techniques automatisées:

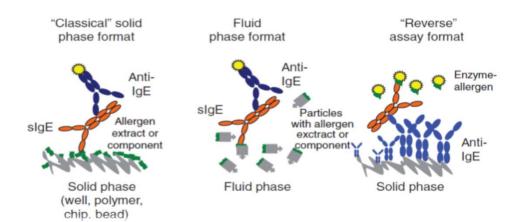
- IgE totales
- Phadiatop
- Trophatop
- IgE spécifiques
- Tryptase
- IgG4 spécifiques

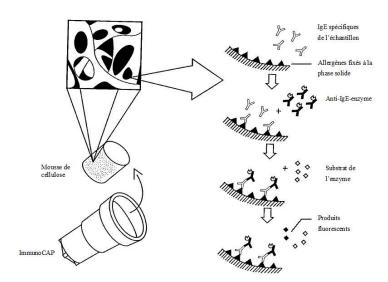
Tests de dépistage multi paramétrique :


Mixte Trophallergènes Pneumallergènes

Biopuces multiallergéniques

Techniques


□ Dérivent toutes du *RAST* (1974)


Pour les tests multiallergéniques et unitaires

Techniques

19

Kleine-Tebbe et al, 2016

Techniques

20

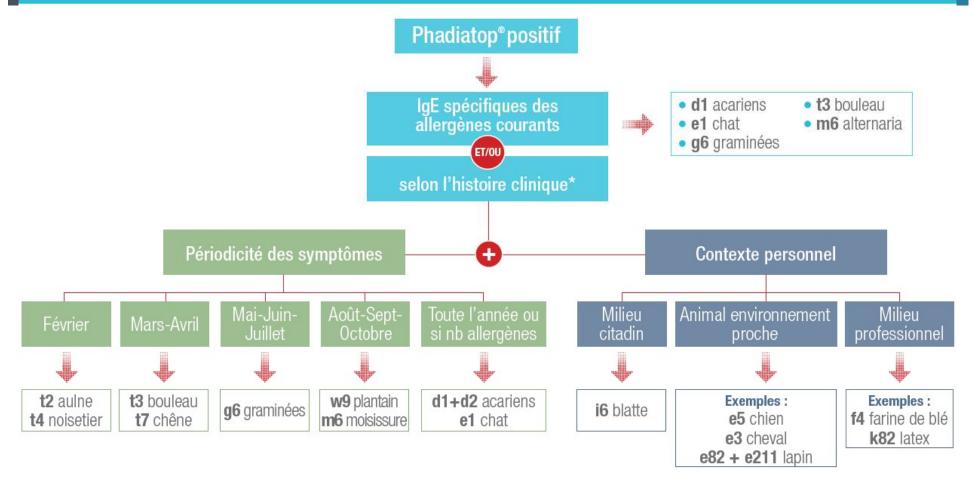
Test unitaire (identification) 4) Détection marquage Anti-lgE marquées Sérum patient (lgE) Support Allergène unique Test multiallergénique (dépistage) Détection marquage Sérum patient (lgE) Mélange d'allergènes

- □ Quantitatif (kU/L)
- □ Gamme de mesure : <0,10 à >100 kU/L
- Attention : pas de standard international, les résultats peuvent varier d'une technique à l'autre pour un même allergène
- Pneumallergènes : Phadiatop
- Mélanges alimentaires : fx (~40 mélanges)

Trophatop enfant

- Blanc d'œuf, lait de vache, arachide, moutarde
- Poisson, noisette, soja, blé
- Crevette, kiwi, bœuf, sésame

Trophatop adulte


- Blanc d'œuf, lait de vache, arachide, poisson, soja, blé
- Noisette, crevette, kiwi, banane
- Sésame, levure de bière, ail, céleri

Suivi d'un test de dépistage positif : IgE spécifiques de pneumallergènes

Phadiatop®

Minimuno CAP

^{*} Vous pouvez prescrire jusqu'à 5 allergènes respiratoires + 5 allergènes alimentaires sur une même ordonnance (remboursés par la sécurité sociale)

Trophatop® positif

IgE spécifiques des aliments en lien avec l'histoire clinique

aliments du ou des mélanges Trophatop® positifs*

Trophatop[®] enfant

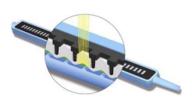
Trophatop® adulte

Avant 2 ans

Après 2 ans

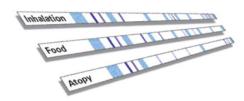
6.00	œuf	lait	6.00	œuf	lait
fx26	arachide	moutarde	fx26	arachide	moutarde
6.07	poisson	noisette	6.07	poisson	noisette
fx27	soja	blé	fx27	soja	blé
£ 00	crevette	kiwi	6.00	crevette	kiwi
fx28	bœuf	sésame	fx28	bœuf	sésame

6.5	œuf	lait	poisson	
fx5	arachide	soja	blé	
. 04	noisette		crevette	
fx24	kiwi		banane	
4-00	sésame	le	levure de bière	
fx28	ail	1	céleri	


Vous pouvez prescrire jusqu'à 5 allergènes respiratoires + 5 allergènes alimentaires sur une même ordonnance (remboursés par la sécurité sociale)

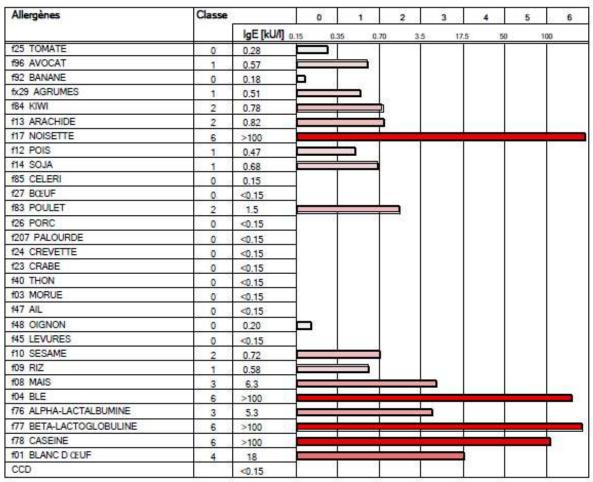
^{*} Si plusieurs mélanges positifs, tester en priorité les allergènes sur fond rouge

Techniques : tests multiparamétriques sur un même support


CLA Eurobio/Ingen

TAP Eurobio/Ingen

Euroline Euroimmun


- □ 30 allergènes
 - Résultats semi-quantitatif
 - Principalement des extraits
 - Recherche des IgE anti-CCD (TAP et Euroline)
- Techniques manuelles pouvant être automatisée
- □ Performances analytiques < à celles des tests unitaires

 Nom:
 CONTROLE
 Epreuve:
 TAP Tropha

 Prénom:
 TAPT
 Commande #:/ Origine:
 0191228123 / 36438

Date de Naiss.: 29/11/2019 Date: 29/11/2019

Date de l'impression: 08/01/2020 (V. 5.01.32)

6x29 f208 / f306 / f33 / f302 - Lemon, Lime, Orange, Mandarin

Contrôle réactionnel: valide

Classe	Conc. IgE [kU/I]	Explication	Classe	Conc. IgE [kU/I]	Explication
0	<0.35	Pas d'anticorps spécifiques détectés.	4	17.5 - <50	Haute concentration d'anticorps
1	0.35 - < 0.7	Quantité d'anticorps très faible	5	50 - <100	Très haute concentration d'anticorps
2	0.7 - < 3.5	Quantité d'anticorps faible	6	>= 100	Concentration d'anticorps extrêmement
3	3.5 - <17.5	Quantité d'anticorps importante			

Tests de dépistage

(pas d'identification de l'allergène)

 Recherche d'IgE spécifiques vis-à-vis de mélanges d'allergènes

- Ordonnances indiquant au maximum :
 - 1 mélange de pneumallergène : B51
 - 3 mélanges alimentaires : 3 x B51

Tests d'identification

- Tests unitaires vis-à-vis d'allergènes multiples : B80
- Tests de quantification des IgE spécifiques vis-à-vis d'allergènes unitaires
- Ordonnances indiquant au maximum :
 - 5 aliments : 5 x B51
 - 5 pneumallergènes : 5 x B51
 - 5 venins: 5 x B51
 - 5 médicaments : 5 x B51
 - 1 test pour le latex : B51
- Mentionner la technique, ses limites, et interprétation des résultats

Nomenclature : Arrêté du 28 novembre 2003

Confirmation diagnostic ou 26 suivi thérapeutique de : Polysensibilisations Parasitoses Urticaire chronique IgE Totales Dermatite atopique Aspergillose broncho-B 40 pulmonaire Certains déficits immunitaires NON-CUMULABLE AVEC Tests de dépistage IgE spécifiques : IgE spécifiques: Tests d'identification vis-àdosage unitaire quantitatif Pneumallergènes **B** 51 vis d'allergènes multiples → 1 seule cotation par patient B 51 Pneumallergènes **B** 51 Trophallergènes B 80 Test unitaire → limité à 5 allergènes /patient → limité à 3 mélanges par → 1 seule cotation par patient Trophallergènes B 51 patient → limité à 5 allergènes / patient

Nomenclature : Arrêté du 28 novembre 2003

27

IgE Totales **B 40**

N'est pas un test de dépistage de l'allergie

CUMULABLE AVEC

Confirmation diagnostic ou suivi thérapeutique de :

- Polysensibilisations
- Parasitoses
- Urticaire chronique
- Dermatite atopique
- Aspergillose bronchopulmonaire
- Certains déficits immunitaires

Certaines IgE spécifiques

- Latex: 1 cotation/patient
 B 51
- Venins d'hyménoptères B 51
 - → limité à 5 tests par patient
- Médicaments
 B 51
 - → limité à 5 tests par patient

Autres actes utilisés en allergie

• Tryptase B 80

• ECP **B 100** (Eosino Cationique Protéine)

Interprétation biologique d'un résultat positif d'IgE spécifiques

28

□ Mise en évidence d'une sensibilisation biologique
 Sensibilisation ≠ allergie

- Quantification des résultats
 - Pour affiner l'interprétation (suivi de la décroissance)
- Réactions croisées à prendre en compte
 - Pour les extraits allergéniques « classiques »

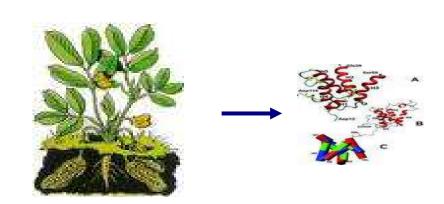
Les limites des extraits allergéniques naturels

- Composition non standardisée (mélange de protéines allergéniques et non allergéniques)
- Variable
 - En fonction des sources : sources allergéniques complexes:
 - grains de pollens
 - squames et phanères d'animaux
 - cultures d'acariens ou de blattes.....
 - Des procédés de préparation :
 - extraction aqueuse
 - dégradation des allergènes fragiles lors de la préparation (chauffage)....
 - De purification et de stockage utilisés :
 - contaminations

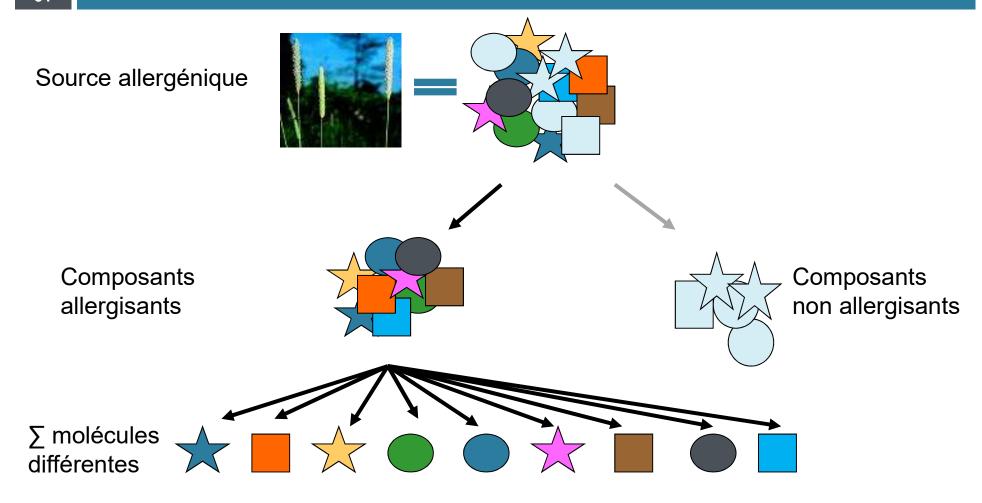
Evolution de la biologie de l'allergie

30

- □ IgE totales
- Tests de screening :
 - Mélanges d'allergènes
 - CLA
- lgE spécifiques avec
 extraits allergéniques naturels


Manque de **spécificité et de sensibilité**

UNE EVOLUTION DANS LE DIAGNOSTIC IN VITRO:

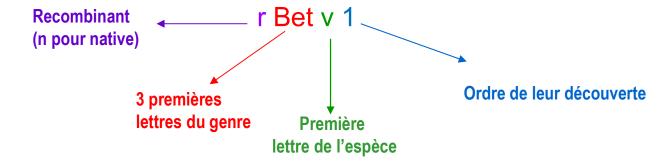

DES EXTRAITS ALLERGENIQUES

AUX ...

ALLERGENES MOLECULAIRES

3'

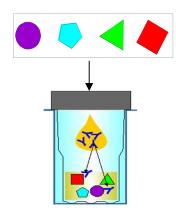
Allergènes MAJEURS (spécifiques d'espèce) et allergènes mineurs (croisants)

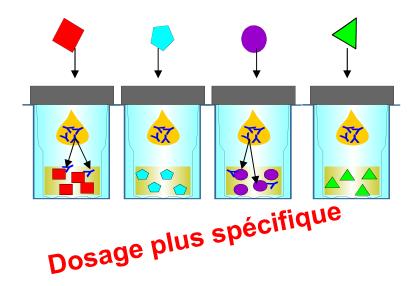

IV. Les allergènes moléculaires Un peu d'histoire sur la biologie de l'allergie

Caractérisation **Premiers Production Commercialisation** des IgE allergènes d'allergènes du test ISAC ® clonés recombinants Tests de provocation **RAST*** 2008 1880 1967 1995-1999 Tests In-vivo Tests I-vitro "Component-resolved diagnosis"

Rappels sur les allergènes moléculaires

33


- Les allergènes moléculaires
 - Natifs : purifiés à partir de sources allergéniques naturelles
 - Recombinants : synthétisés par génie génétique à partir de cellules procaryotes
 (E. coli ++)
- □ A ce jour, + de 1000 allergènes (regroupés en 175 familles) ont été identifiés
- □ Nomenclature : exemple du bouleau *Betula verucosa*


Avantages des allergènes recombinants

- Standardisation des réactifs
- Production à grande échelle
- Excellente reproductibilité des lots
- Pureté supérieure aux allergènes purifiés

Source allergénique

Composants allergéniques natifs ou recombinants

II. Stratégies de prise en charge d'une hypersensibilité immédiate

Interrogatoire +++

 Recherche des allergènes responsables des signes cliniques Tests cutanés

Tests de provocation

Disparition des signes à l'éviction de l'allergène

+/- Biologie

+/- Biologie

□ **-** :

 Quand symptomatologie simple, facilement reliée à un allergène lors de l'interrogatoire

+ :

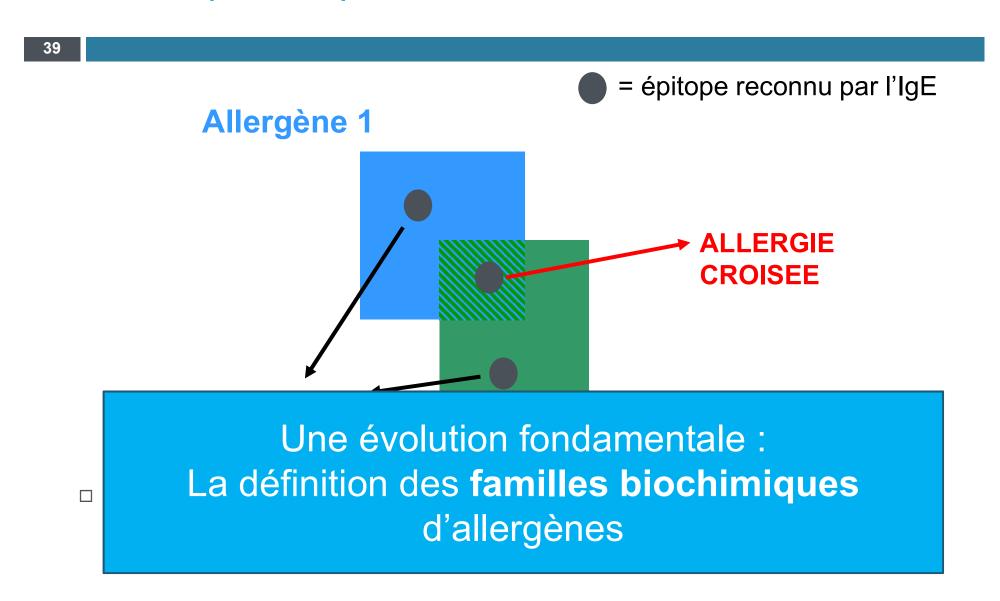
- Quand patient vu par un non spécialiste
- Quand tests cutanés irréalisables (eczéma, peau aréactive) ou interprétation difficile (dermographisme)
- Aide des nouveaux outils disponibles au diagnostic et à la prise en charge (TPO, éviction, désensibilisation)

Les allergènes moléculaires en pratique

- 1) Outil de dépistage des réactions croisées sur des bases moléculaires et aide à l'interprétation des polysensibilisations cutanées
- 2) Outil pour améliorer les tests biologiques classiques

37

- 3) Outil pour contribuer à un diagnostic plus spécifique
- 4) Outil pour améliorer/personnaliser la prise en charge du patient (immunothérapie, établir un risque de réactions sévères, indication d'un TPO, éviction)


38

1) Outil de dépistage des réactions croisées et aide à l'interprétation

Dépistage des réactions croisées sur des bases moléculaires

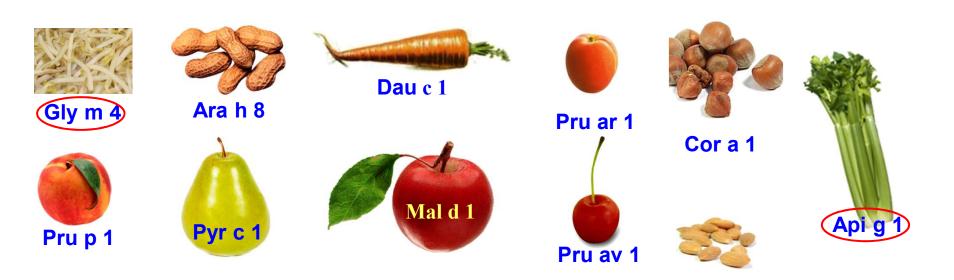
Aide à l'interprétation des polysensibilisations cutanées

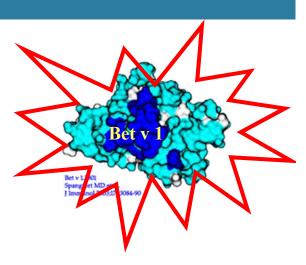
Outils pour dépister les réactions croisées

Différents types de réactions croisées

Entre espèces taxonomiquement proches :

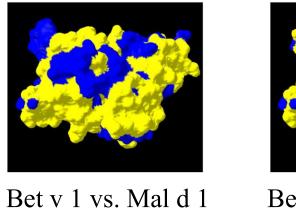
- Acariens (d1, d2)
- Graminées (dactyle, phléole)
- Frêne / olivier : famille des Oléacées

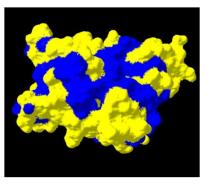

Entre espèces taxonomiquement éloignées :

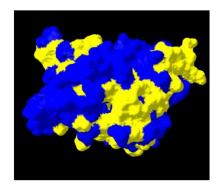

- La relation botanique ne permet plus d'expliquer les réactions croisées
- Notion de famille moléculaire (protéines provenant de divers allergènes et ayant la même fonction physiologique)

Réactions croisées entre allergènes inhalés et aliments

Allergènes inhalés	Aliments
Pollens de Bouleau,Aulne,Noisetier	Noix/noisette, amande, pomme, poire, cerise, abricot, pêche, kiwi
Pollen d'Armoise	Céleri , carotte, fenouil, anis, aneth, paprika, Coriandre, camomille, cumin ,tournesol
Pollen d'ambroisie	Melon, banane
Acariens de la poussière domestique	Crevette, homard, langouste,crabe escargot
Latex	Avocat, banane ,marron, kiwi, figue,
	papaye, épinard, pomme de terre, tomate
Plumes d'oiseaux	Œuf de poule
Pollens (tous)	Miel


- Allergies croisées pollens-aliments
- Syndrome « Pomme-Bouleau »
- □ Base moléculaire des RC bien décrite : les PR-10
- Allergènes sensibles :
 - À la pepsine : syndromes locaux (oraux ++)
 - À la chaleur/cuisson : aliment cuit, en général toléré
- Réactions allergiques aux fruits et légumes du nord de l'Europe





Expliquer des réactions croisées sur des bases moléculaires

Identité / allergène	Bet v 1	Mal d 1	Gly m 4	Api g 1
% séquences	100	56	47	39
% surface	100	71	60	47

Bet v 1 vs. Gly m 4

Bet v 1 vs. Api g 1

Degré de similitude des épitopes conformationnels

Surface commune

Quelques familles moléculaires

Allergènes d'origine végétale	
Protéines de stockage	Albumines 2S (Ara h 2, Ara h 6, Cor a 14, Ses i 1, Jug r 1, Ber e 1, Ana o 3) – Globulines 7S (Ara h 1, Gly m 5, Jug r 2) - Globulines 11S (Ara h 3, Cor a 9, Gly m 6, Ana o 2)
PR-10 ou Bet v 1-like (Pathogenesis related)	Bouleau (Bet v 1), Noisette (Cor a 1), Arachide (Ara h 8), Soja (Gly m 4), Céleri (Api g 1), Pêche (Pru p 1), Kiwi (Act d8), Pomme (Mal d 1), cerise (Pru av 1)
LTP (Lipid Transfer Proteins) (PR-14)	Pêche (Pru p 3), Noisette (Cor a 8), Arachide (Ara h9), Armoise (Art v 3), pomme (Mal d 3) cerise (Pru av 3), Pariétaire (Par j 2)
Profilines	Bouleau (Bet v 2), Phléole (Phl p 12), Latex (Hev b 8), Pêche (Pru p4)
Polcalcines	Bouleau (Bet v 4), Phléole (Phl p 7)

Quelques familles moléculaires

Allergènes d'origine animale	
Tropomyosines	Crevettes (Pen a 1, etc), homard, crabe, huître, Acariens (Der p 10), blatte, anisakis
Parvalbumines	Carpe (Cyp c 1), Morue (Gad c 1),
Albumines	Chat, Chien, Vache, Porc

Classification des familles d'allergènes végétaux

□ (Hauser M. et al. Allergy, Asthma and Clinical Immunology 2010;6:1)

		Distribution						
Classification	Famille d'allergènes	Pollens				Aliments		
	i animo a anorgonos	Arbres	Graminées	Herbacées	Fruits	Légumes	Fruits Coques	Latex
Pan-allergènes (vrais pan-allergènes ubiquitaires)	Profilins	x	x	x	x	x	x	X
	Polcalcins	Х	Х	Х				
Fra elleneduse	ns LTP	Х		Х	Х	Х	Х	Х
Eur-allergènes	PR-10	Х			Х	Х	Х	
(distribution large)	Hevein-like domain proteins	Х			Х	Х	Х	Х
	β-1,3 glucanases	Х			Х	Х		Х
	Pectate lyases	Х		х				
	Cyclophilines	Х	Х					
Sten-allergènes	Thaumatin-like proteins	Х			Х	Х		
(distribution étroite)	PR-1		Х	Х		Х		Х
,	Patatines						Х	Х
	Cupines						Х	
	Fe/Mn superoxide dismutases						Х	Х
	Albumines 2S						Х	
Man allamaknas	Expansines		Х					
Mon-allergènes	Oléosines						Х	
(distribution limitée à 1 seule source)	Facteurs d'élongation du caoutchouc							Х
	α-amylases						Х	

2) Outil pour améliorer les tests biologiques classiques

Analyse	Unité	Borne	23/06/15
IgE	kU/L	<150	532
Bouleau rBet v1	kU/L		73,70
Bouleau rBet v2	kU/L		<0.10
Soja (aliment)	kU/L		<0.10
rGly m4	kU/L		
Pomme	kU/L		12,70
Pomme rMal d 1 PR-10	kU/L		
Noisette	kU/L		24,10
rCor a 1	kU/L		
rCor a 8	kU/L		
noisette rCor a 14	kU/L		
noisette rCor a 9	kU/L		

Species	Allergen	Biochemical name	MW (SDS-PAGE)	Food Allergen	Entry Date		
Glycine ma	Glycine max (Soy bean)						
	Gly m 1	Hydrophobic protein from soybean, LTP	7	No	2003-06-24		
	Gly m 2	Défensine	8	No	2003-06-25		
	Gly m 3	Profiline	14	Yes	2003-06-25		
	Gly m 4	Pathogenesis-related protein, PR-10 , Bet v 1 family member	17	Yes	2006-11-03		
	Gly m 5 Beta-conglycinine (viciline, globuline 7		see subunits	Yes	2008-08-19		
	Gly m 6	Glycinin (légumine, globuline 11S)	see subunits	Yes	2008-08-19		
	Gly m 7 Seed-specific biotinylated protein (SSBP)		76.2 kDa	Yes	2012-09-24		
	Gly m 8	2S albumin		Yes	2014-01-07		

http://www.allergen.org/

Analyse	Unité	Borne	23/06/15
IgE	kU/L	<150	532
Bouleau rBet v1	kU/L		73,70
Bouleau rBet v2	kU/L		<0.10
Soja (aliment)	kU/L		<0.10
rGly m4	kU/L		11,1
Pomme	kU/L		12,70
Pomme	kU/L		22.6
rMal d 1 PR-10	KU/L		33,6
Noisette	kU/L		24,10
rCor a 1	kU/L		49,3
rCor a 8	kU/L		<0.10
noisette rCor a 14	kU/L		<0.10
noisette rCor a 9	kU/L		<0.10

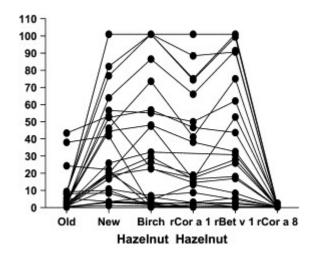
- Présence en faible quantité du composant
 Gly m4 dans l'extrait naturel utilisé pour le test f14 (IgE spécifiques graine de soja)
- Conseils sur les mesures à prendre par l'utilisateur

Il est recommandé de compléter le bilan biologique avec le test rGly m4

- Pour les patients sensibilisés au pollen de bouleau, chez lesquels est suspectée une allergie au soja
- Et/ou les patients avec une histoire convaincante d'allergie au soja, mais avec un résultat négatif pour le test f14

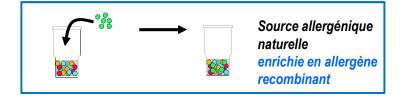
Un résultat négatif pour f14 (graine de soja) et positif pour **rGly m 4 (**PR-10) est souvent associé à des **réactions locales**.

Cependant des **réactions systémiques** peuvent survenir, en particulier chez les patients allergiques au pollen d'arbres apparentés au bouleau lors de la consommation de **grandes quantités de soja peu transformé** (ex: lait de soja).


Amélioration des tests biologiques, exemple de la noisette

Noisette (f17)

- Cor a1 (PR-10, homologue de bet v1) détruite par le chauffage lors de la préparation de f17
- Enrichissement du test f17 en rCor a1
- Caution: The Phadia hazelnut ImmunoCAP (f17) has been supplemented with recombinant Cor a1 and now detects Bet v 1–specific IgE, which leads to elevated values for persons with birch pollen allergy


(Sicherer S. et al ,JACI, August 2008 413-415)

Moyenne IgE spécifiques ×14 chez patients sensibilisés à Bet v 1

Depuis décembre 2013 : enrichissement en Cor a 8

Amélioration des tests biologiques

Latex (k82)

- Hev b5 : allergène majeur, en faible quantité dans les extraits de latex
- Enrichissement du test k82 en rHev b5
- Meilleure détection des patients monosensibilisé à Hev b5

Noix (f256)

- Amélioration du procédé d'extraction pour mieux extraire dug r (albumine 2s) jusqu'à la peu présent dans l'extrait classique
- Intérêt pour les patients monosensibilisé à Jug r1

Venin de guêpes

 Enrichissement des extraits de guêpe poliste et vespula en antigène 5 (Pol d5 et Ves v5)

4) Outil pour contribuer à un diagnostic plus spécifique

Allergènes moléculaires et diagnostic plus spécifique Exemple du latex

□ Allergènes du latex

Allergènes	Familles moléculaires	Majeur (M) - mineur (m)
Hev b 1	Facteur d'élongation	m
Hev b 2	1,3β-glucanase	M
Hev b 3	REF-like protéine	m
Hev b 4	Lécithinase	m
Hev b 5	Acidic protein	M
Hev b 6.01	Précurseur de lectine	M
Hev b 6.02	Lectine	M
Hev b 7	Patatin-like protéine	m
Hev b 8	Profiline	m
Hev b 9	Enolase	m
Hev b 10	Superoxyde-dismutase	m
Hev b 11	Chitinase	m
Hev b 12	LTP	m
Hev b 13	Nodulin-like protéine	M

Allergènes moléculaires et diagnostic plus spécifique Exemple du latex

- Intérêt de rHev b5 dans le diagnostic d'allergie au latex
- □ Homme de 22 ans
- □ Etudiant en médecine
- Absence de terrain atopique
 - Pas de pollinose
 - Pas d'allergie alimentaire
- Rhinoconjonctivite à l'arrivée
 dans le service clinique

Prick-tests latex

Allerbio : Négatif

Stallergènes : Négatif

□ IgE spécifiques Latex (k82) : 4,39 KU/L

rHev b 1 <0,10 kU/L	rHev b 6.02 <0,10 kU/L
rHev b 2 <0,10 kU/L	rHev b 8 <0,10 kU/L
rHev b 3 <0,10 kU/L	rHev b 9 < 0,10 kU/L
rHev b 5 = 1,84 kU/L	rHev b 11 <0,10 kU/L
rHev b 6.01 <0,10 kU/L	broméline <0,10 kU/L

→ Allergie au latex confirmée par la présence d'IgE dirigées contre rHev b5

Réaction croisée biologique : latex

- □ Biologie:
 - Latex: 36,1 kU/L
 - Hev b1 : < 0,10 kU/L</p>
 - Hev b2 : < 0,10 kU/L</p>
 - Hev b3 : < 0,10 kU/L</p>
 - Hev b4 : < 0,10 kU/L
 - Hev b5 : < 0,10 kU/L
 - Hev b6.01: < 0,10 kU/L</p>
 - Hev b6.02: < 0,10 kU/L
 - Hev b8 : > 100 kU/L
 - Hev b9 : < 0,10 kU/L
 - Hev b11 : < 0,10 kU/L</p>

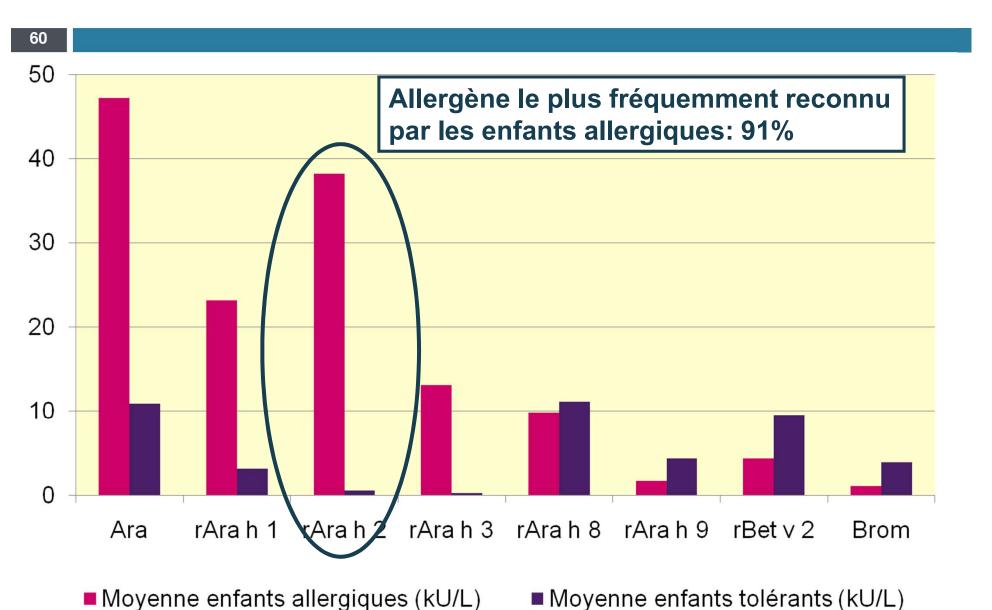
- TC négatifs
- Pas d'arguments en faveur d'une allergie au latex
- Mais très pollinique
- Hev b8 : profiline
- Réactions croisées avec de nombreux pollens et aliments d'origine végétale

Allergènes moléculaires et diagnostic plus spécifique Exemple de l'arachide

□ IgE spécifiques arachide (extrait total)

	sensibilité	spécificité
f13	100 %	42,5 %

→ Régime d'éviction non pertinent


Allergènes moléculaires et diagnostic plus spécifique Exemple de l'arachide

Les allergènes de l'arachide

59					
Ara h 1	Ara h 2-6-7	<u>Ara h 3</u> -4	Ara h 5	Ara h 8	Ara h 9
Viciline Globuline 7S	Conglutine Albumine 2S	Légumine Globuline 11S	Profiline	PR 10	LTP
	Protéines de stockage Stables chaleur et digestion			Thermosensible	Stable chaleur et digestion
			Bet v 2	<u>Bet v 1</u>	
Cor a 11	Cor a 14	Cor a 9	Cor a 2	Cor a 1	<u>Cor a 8</u>
Ses i 3	Ses i 1, 2	Ses i 6,7			
Gly m 5		Gly m 6	Gly m 3	Glym 4	
Pis s 1					
Allergènes majeurs Réactions sévères		Allergène mineur	Syndrome oral	Réactions parfois sévère	

Résultats d'une étude lyonnaise sur 100 enfants

(thèse de G. Proton)

Vers un diagnostic biologique plus spécifique

□ Résultats de Nancy

	sensibilité	spécificité				
f13	100 %	42,5 %				
Ara h 2	98,9 %	97,5 %				
Ara h 1	78,7 %	95 %				
Ara h 3	66 %	92,5 %				

Cas clinique : aide au diagnostic

- Garçon de 7 ans
 - Atopie: AA
 - Pas d'allergie pollinique connue
 - Allergie au poisson et kiwi
- Syndrome d'allergie orale et vomissements avec l'arachide
- Test cutané
 - Arachide: positif (7 mm)
- Bilan biologique
 - f13: 1,82 kU/L
 - rAra h1 : < 0,10 kU/L</p>
 - rAra h2 : 1,46 kU/L
 - rAra h3 : < 0,10 kU/L</p>
 - rAra h8 : < 0,10 kU/L</p>
 - □ rAra h9 : < 0,10 kU/L
 - Broméline : < 0,10 kU/L</p>
 - □ rBet v2 : < 0,10 kU/L
- □ TPO : Echec

- □ Garçon de 10 ans
 - Atopie : AA, RA
 - Allergie pollinique : Graminées
 - Pas d'autre allergie alimentaire
- Syndrome d'allergie orale avec l'arachide
- □ Test cutané
 - Arachide: positif (5 mm)
- Bilan biologique
 - f13: 1,98 kU/L
 - rAra h1 : < 0,10 kU/L</p>
 - rAra h2 : 0,36 kU/L
 - rAra h3 : < 0,10 kU/L</p>
 - rAra h8 : < 0,10 kU/L</p>
 - rAra h9 : < 0,10 kU/L
 - Broméline : < 0,57 kU/L
 - rBet v2 : < 0,10 kU/L</pre>
- □ TPO: Succès

Cas clinique

- □ Garçon de 8 ans
 - Atopie : DA
 - Pas d'allergie pollinique connue
 - Allergies alimentaires : lentilles, petits pois, pois chiches (angioedème du visage et gène respiratoire)
- Pas de réaction clinique connue à l'arachide
- □ Tests cutanés (témoin positif 5 mm)
 - Arachide (4 mm)
 - Lentilles (6 mm)
 - Petits pois (13mm)

- □ Bilan biologique :
 - □ f13 > 100 kU/L

Cet enfant est-il allergique à l'arachide?

« Courbe de risque » établie avec les extraits allergéniques

Allerge	Reactiven (no chainecess
Egg	7 kU/
Milk	15 kl
Pean	ut 14 kl
Fish	20 kl
Soyb	ean 30 kl
Whea	at 80 kl

□ Mais:

- Valeurs très variables selon les études et populations étudiées
- Possibilités d'interférences dans le dosage (notamment chez les polliniques)

Cas clinique

- □ Garçon de 8 ans
 - Atopie : DA
 - Pas d'allergie pollinique connue
 - Allergies alimentaires : lentilles, petits pois, pois chiches (angioedème du visage et gène respiratoire)
- Pas de réaction clinique connue à l'arachide
- ☐ Tests cutanés (témoin positif 5 mm)
 - Arachide (4 mm)
 - Lentilles (6 mm)
 - Petits pois (13mm)

- Bilan biologique :
 - □ f13 > 100 kU/L
 - rAra h1 : > 100 kU/L
 - rAra h2 : 0,26 kU/L
 - rAra h3 : 0,75 kU/L
 - rAra h8 : 26,3 kU/L
 - rAra h9 : 29,1 kU/L
 - Broméline: 2,15 kU/L
 - □ rBet v2 : < 0,79 kU/L

□ TPO: Succès

Allergie aux lentilles/petits pois/pois chiches due à la sensibilisation aux vicilines (rAra h1) responsable de la forte positivité du f13

66

4) Outil pour améliorer/personnaliser la prise en charge du patient

Immunothérapie
Risque de réactions sévères
Indication d'un TPO
Eviction

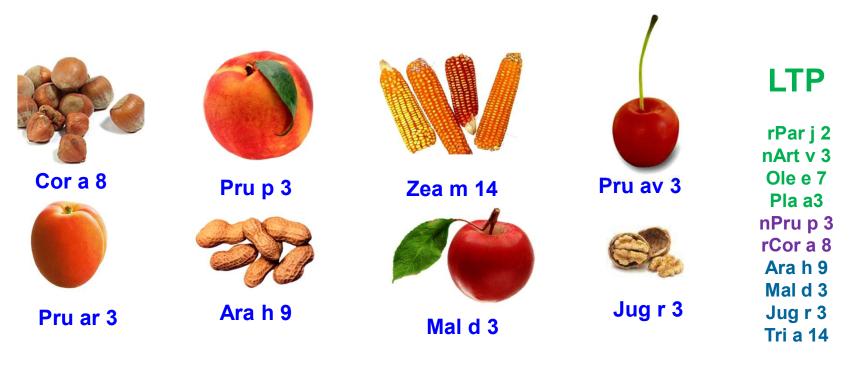
- > Identification de marqueurs de sévérité de l'allergie
- Identification de marqueurs de persistance de l'allergie

Identification des marqueurs de sévérité

- Suivant la famille moléculaire impliquée :
 - Syndrome oral
 - Réaction systémique grave

PR-10

- Sensible à la pepsine, chaleur/cuisson
- Symptômes si aliments consommés crus
- Syndrome oral

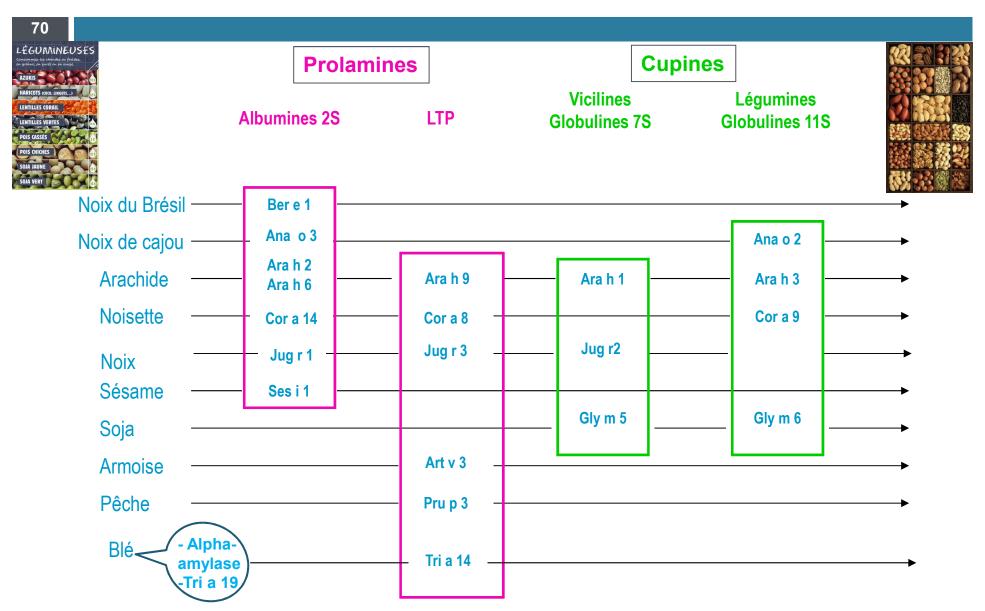

LTP

- Résistant à la pepsine, chaleur/cuisson
- Structure préservée dans le tractus digestif
- Risque de réactions systémiques

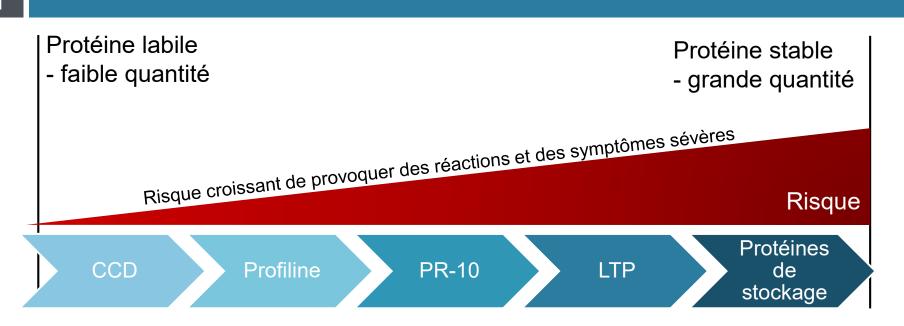
Famille des LTP

- Protéines stables à la chaleur : réaction avec les aliments crus et cuits
- Protéines stables à la digestion : réactions souvent systémiques
- Allergies alimentaires aux fruits en l'absence d'allergie pollinique
- Réactions allergiques aux fruits et légumes du sud de l'Europe

La famille des LTP

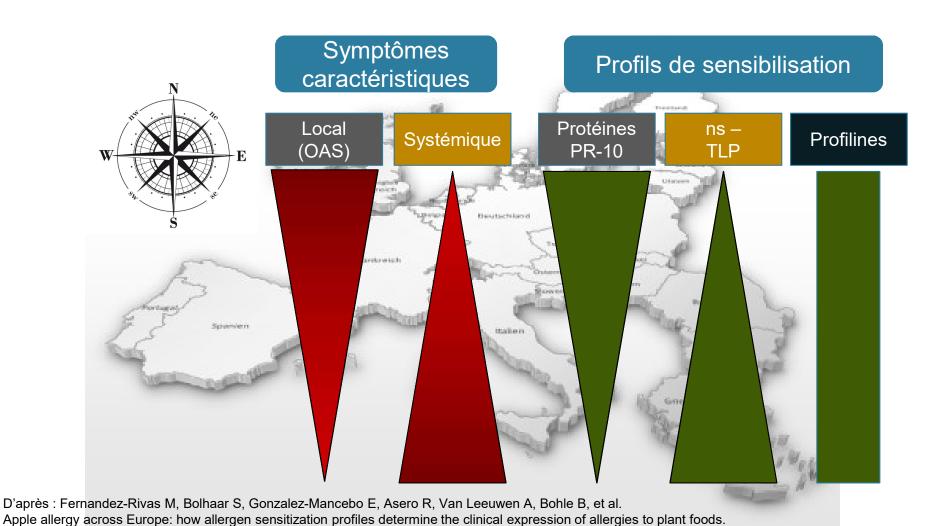

- Voies de sensibilisation
 - Digestive : « vrais allergènes alimentaires »
 - sensibilisation primaire à la LTP de la pêche (Pru p 3), puis réactions à d'autres végétaux contenant des LTP (réactivité croisée avec Pru p 3).
 - Sensibilisation primaire par les pollens ? (pariétaire, cyprès)
 - Cutanée : induction d'urticaire (Asero)
- Monosensibilisation
- LTP + effort(ou autre cofacteur)

A. Romano et al Clinical & Experimental Allergy, 42, 1643-1653


Accession numbers	Allergen	Mor n 3	Fra a 3	Cit s 3	Rub i 3	Pru d 3	Pru p 3	Pru av 3	Mal d 3	Vit v 1	Pru du 8	Pru ar 3	Pyr c 3	Cor a 8	Art v 3	Par j 2
Q4PLU0	Fra a 3		100	64	82	73	70	68	73	68	67	69	68	59	56	32
Q8L5S8	Cit s 3			100	64	63	68	62	70	59	64	69	61	59	56	29
Q0Z8V0	Rub i 3				100	74	69	70	75	61	67	68	71	61	54	31
P82534	Pru d 3					100	88	87	82	60	91	91	77	59	51	30
Q5RZZ3	Pru p 3						100	87	79	61	97	91	75	56	52	26
Q9M5X8	Pru av 3							100	83	63	89	85	79	59	53	26
Q5J026	Mal d 3								100	60	79	86	85	61	50	26
Q850K5	Vit v 1									100	60	58	63	53	56	34
B6CQU2	Pru du 8										100	89	78	62	52	25
P81651	Pru ar 3											100	78	60	52	30
Q9M5X6	Pyr c 3												100	56	56	25
Q9ATH2	Cor a 8													100	57	26
P0C088	Art v 3														100	32
P55958	Par j 2															100

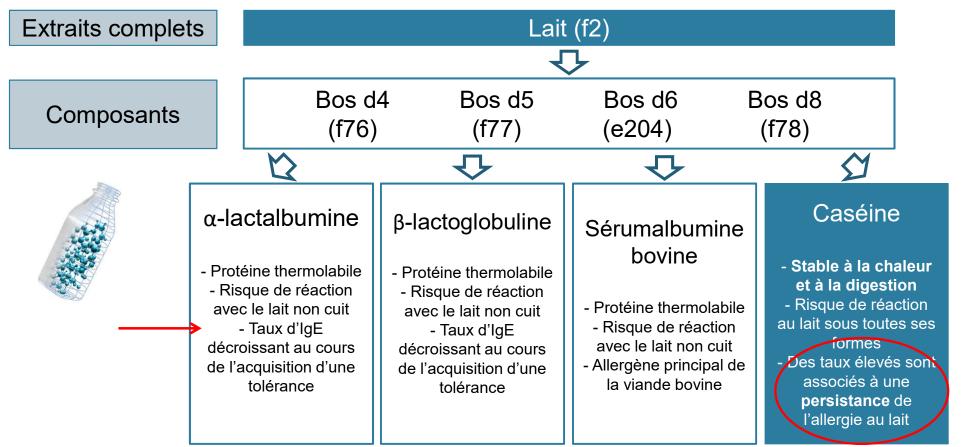
Les protéines de stockage

Raisonnement par source allergénique ou par familles moléculaires

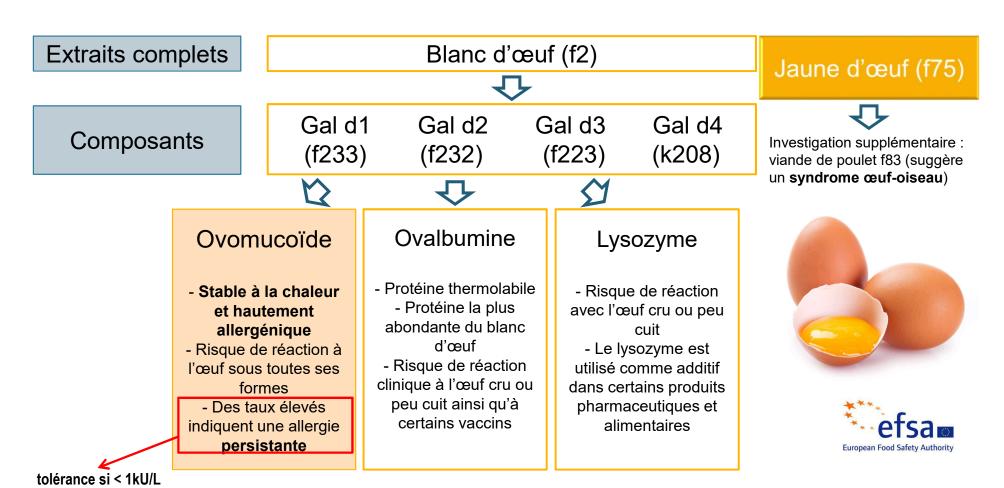

Evaluation (simplifiée) du risque en fonction de la famille moléculaire

- □ Identification de marqueurs de sévérité de l'allergie
- Identification de marqueurs de persistance de l'allergie
- Basé sur les propriétés physicochimiques des protéines allergéniques

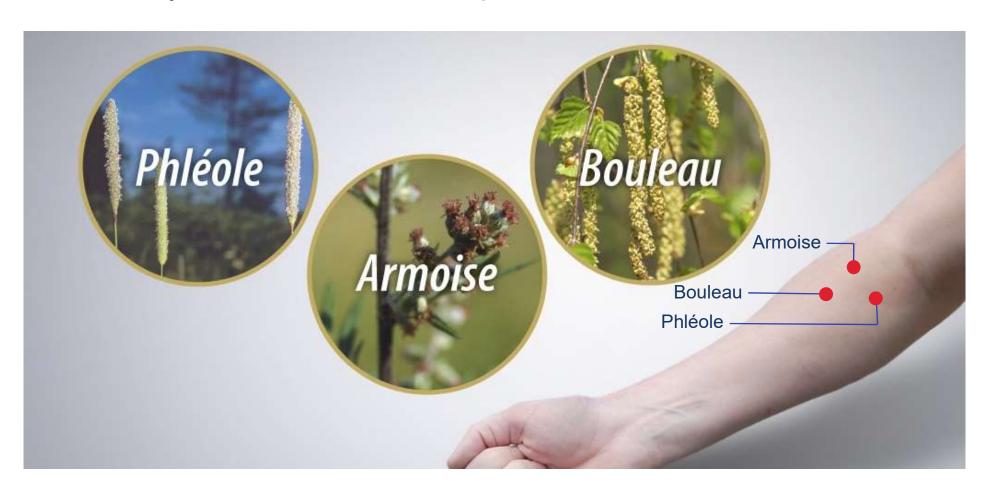
J Allergy Clin Immunol 2006; 118:481-8


Répartition Nord-Sud des profils de sensibilisation

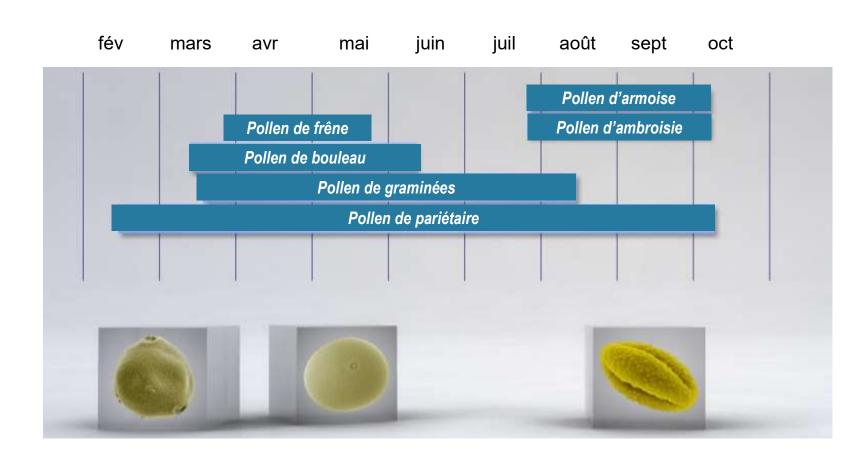
73


1. Confirmation de l'allergie IgE médiée

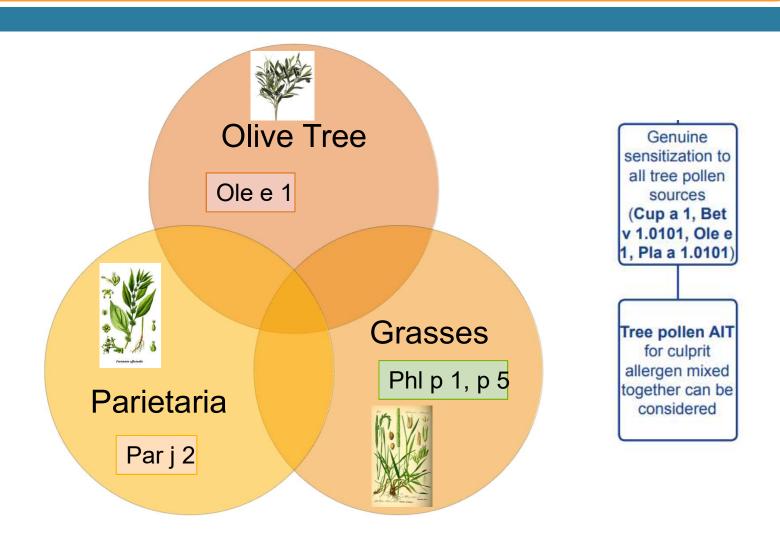
2. Aide à la prise en charge

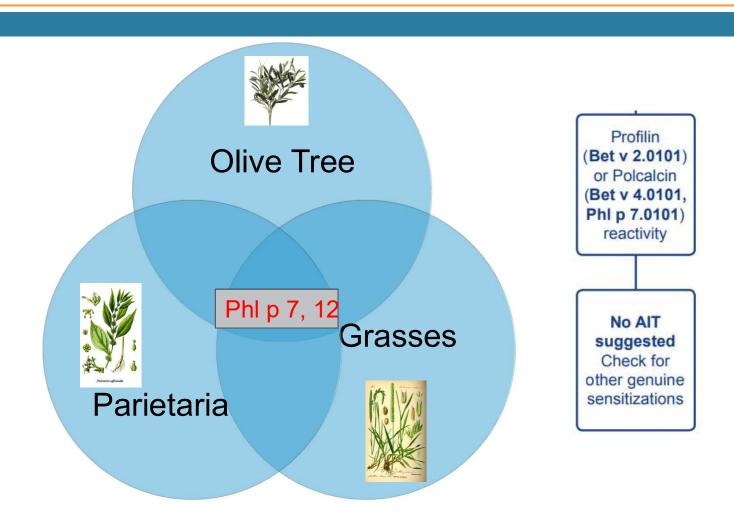

74

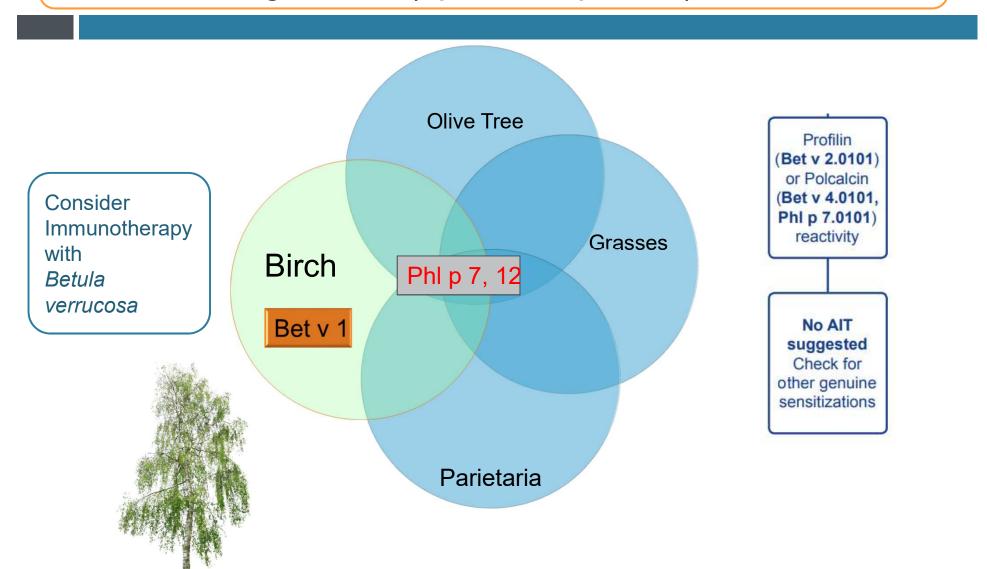
réaction clinique / persistance si > 11 kU/L

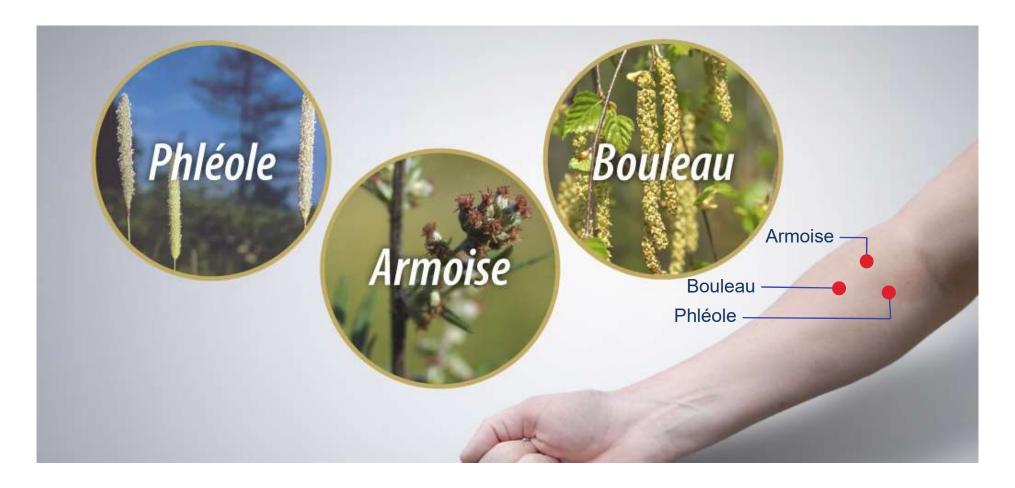


State of the art and new horizons in the diagnosis and management of egg allergy Benhamou A. H., Caubet J.-C, Eigenmann P. A., Nowak-We, grzyn A, Marcos C. P., Reche M, Urisu A. Allergy 2010,65, 283–289

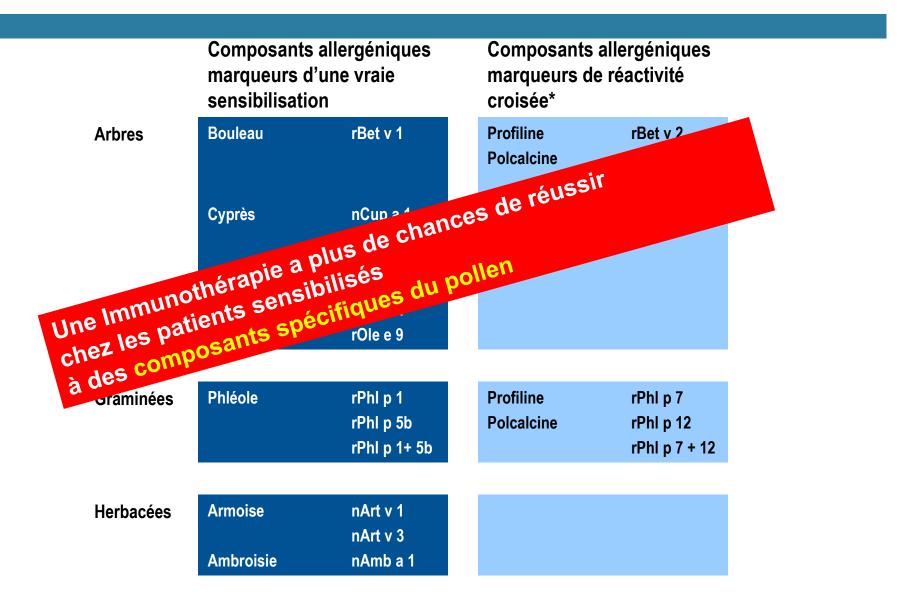

Polysensibilisation à des pollens...

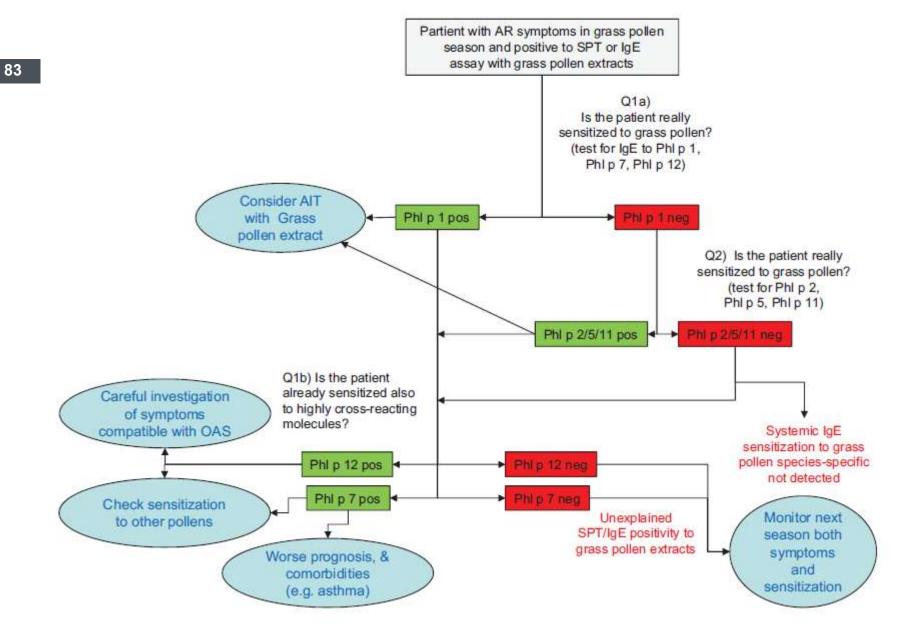

Les saisons polliniques se chevauchent

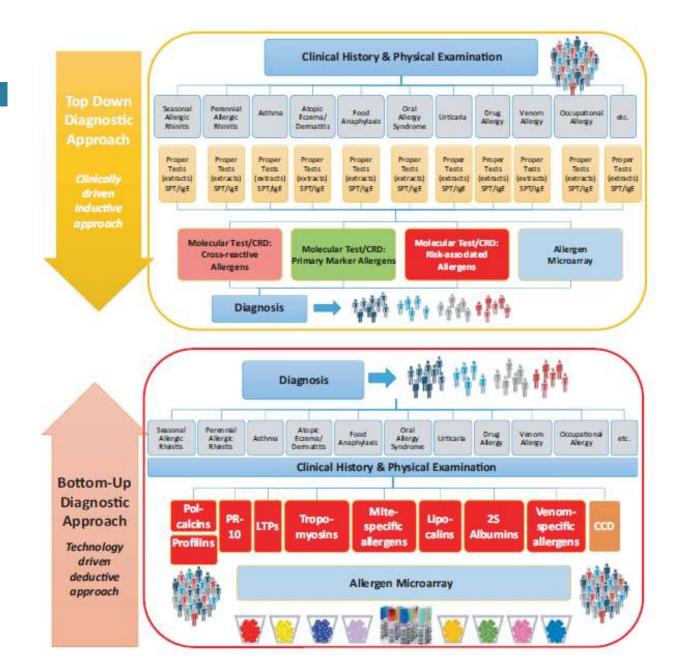

Common reasons to use molecular diagnostics Markers of genuine (species-specific) sensitization

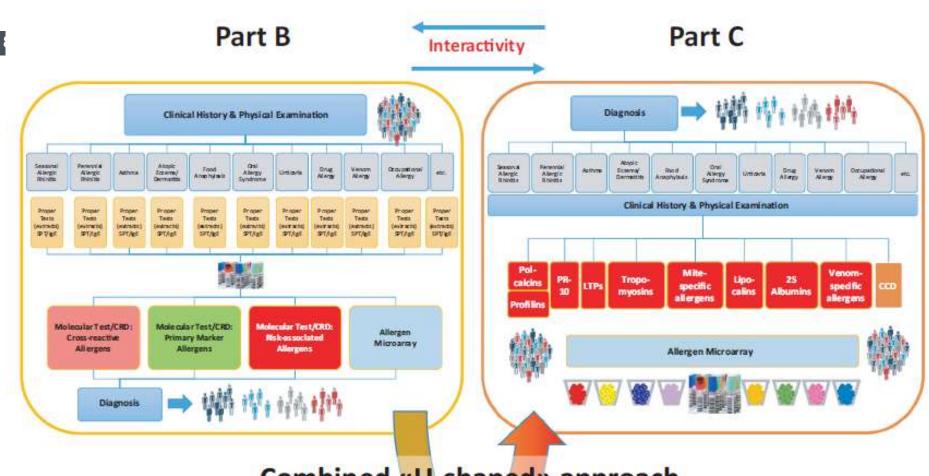

Common reasons to use molecular diagnostics Markers of genuine (species-specific) sensitization

Common reasons to use molecular diagnostics Markers of genuine (species-specific) sensitization




Est-ce de vraies sensibilisations dues à des composants spécifiques ?

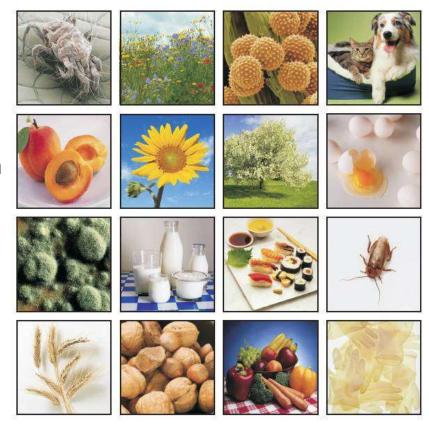



ou une réactivité croisée due à des composants « croisants » ?

Combined «U-shaped» approach

Fig. 1(b) The combined 'U-shaped' diagnostic approach to allergic diseases. See text for explanation.

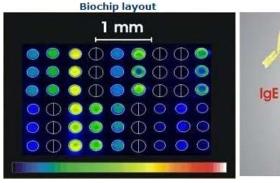
Biopuces multiallergéniques

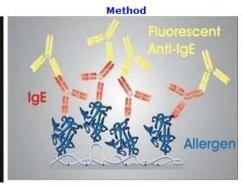

Faible quantité de sérum (< 100µL)

Fixation de différentes biomolécules sur un format microscopique

Détermination d'un profil de sensibilisation

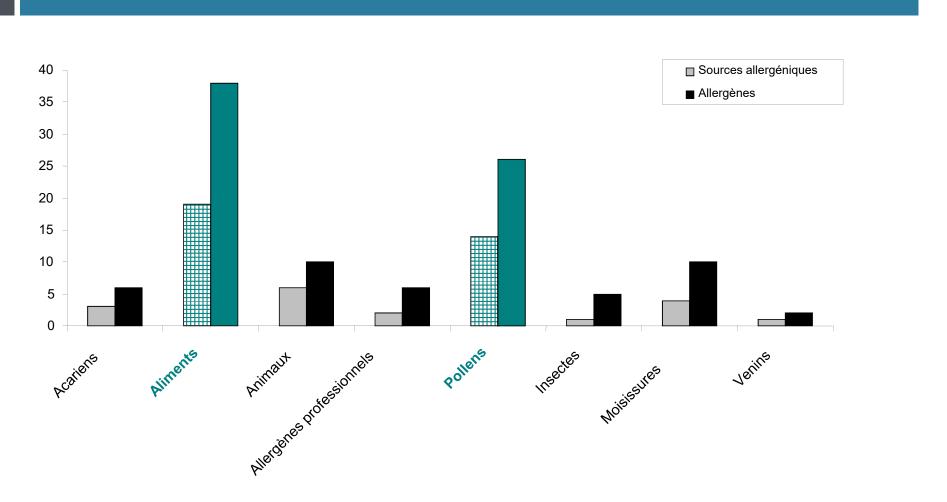

Obtention d'un grand nombre de résultats simultanément : « Vision élargie »


Possibilité d'explorations parallèles (ex : IgE/IgG)

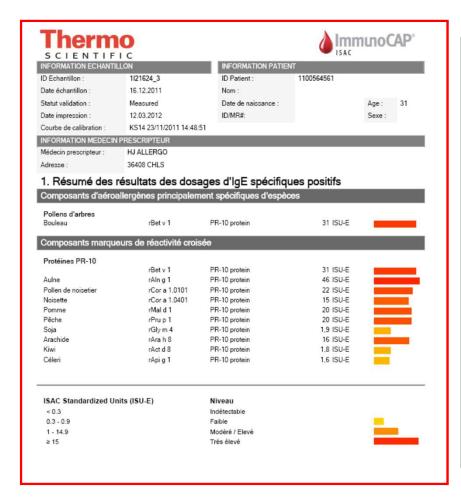


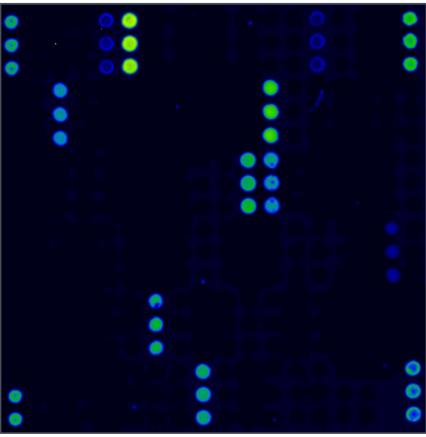
Biopuces multiallergéniques : Test ISAC – Thermofisher Scientific

- 1ère biopuce commercialisée en France
- □ 112 allergènes moléculaires (r ou n) (provenant de 51 sources allergéniques)
- 30 µL de sérum
- Dosage semi-quantitatif
- Signal fluorescent
- Calibration à l'aide d'un échantillon standardisé

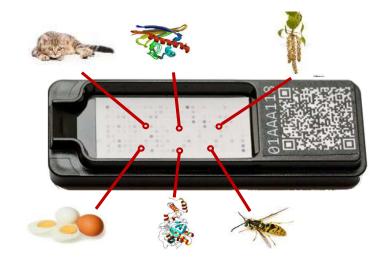


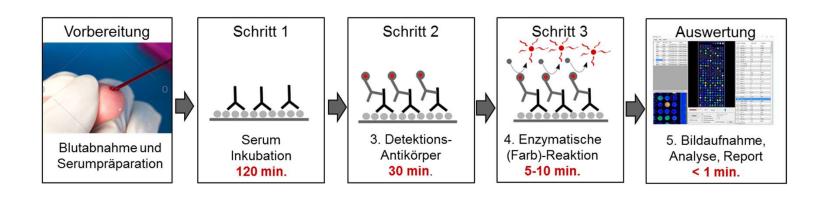
	Resul	t	
Grass pollen			
Bermuda Grass	nCyn d 1	1 ISU	
Timothy Grass	rPhl p 1	1,8 ISU	
	rPhl p 5	1,1 ISU	-
	rPhl p 6	0,9 ISU	
Tree pollen			
Birch	rBet v 1	27 ISU	
Animals			
Cat	rFeld 1	5,5 ISU	
	rFel d 4	1,5 ISU	
Dog	rCanf1	2 ISU	


112 allergènes représentant 51 sources allergéniques

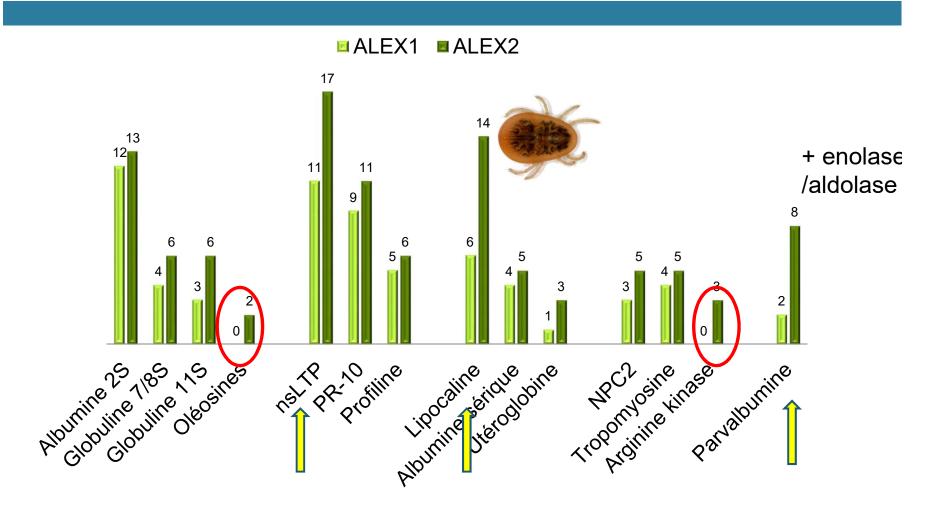

88

(/100 ImmunoCap)


Exemple de résultat de Biopuce ISAC 112



Biopuces multiallergéniques : Test ALEX – Macroarray Diagnostics


- 302 allergènes
 - 118 extraits
 - 184 allergènes moléculaires (dont 5 RUO)
- Dosage semi-quantitatif

Estimation du taux d'IgE totales

Allergènes moléculaires : Evolution ALEX1 / ALEX2 de 56 à 72 familles allergéniques

Biopuces multi-allergéniques: quelles indications?

92

- □ Pour quels patients?
- Quelle aide supplémentaire ?

En élargissant, on affine....?

Biopuces multi-allergéniques: quelles indications?

93

Définition du profil de sensibilisation d'un polysensibilisé

- Asthme sévère
- · Allergies alimentaires multiples et sévères
- Poser l'indication d'une immunothérapie spécifique chez un polysensibilisé

Histoire clinique mal ou non expliquée par les tests traditionnels

- · Anaphylaxie avec enquête allergologique négative
 - Nouvel éclairage ?
 - Découverte de sensibilisations inattendues qui font avancer dans le diagnostic

Pathologies nécessitant un bilan allergologique étendu au diagnostic

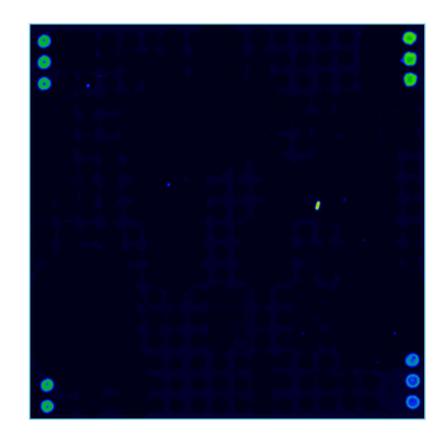
Diagnostic d'élimination de l'allergie

Etudes épidémiologiques

Limites de ces tests :

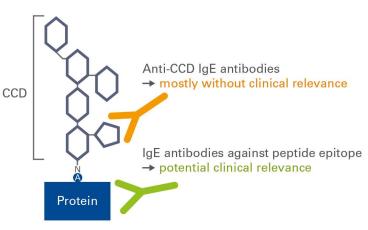
- Souvent moins sensible que les tests unitaires
- Il manquera toujours des allergènes

A WAO - ARIA - GA²LEN consensus document on molecular-based allergy diagnostics Canonica et al. World Allergy Organization Journal 2013, 6:17


http://www.waojournal.org/content/6/1/17

ISAC négatif : élimination de l'allergie ?

_9₄

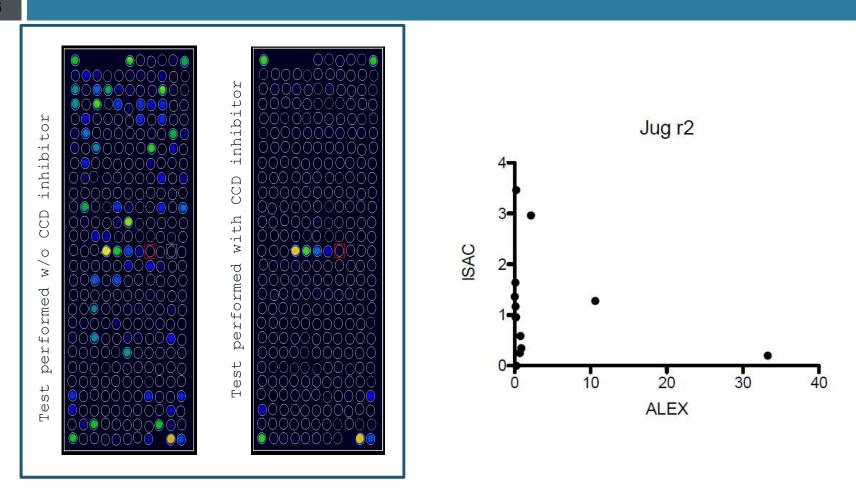

- A. Daniel né en 1943
- Histoires cliniques « bizarres » souvent après consommation d'abats (6 à 7 h après)

IgE alpha-gal = 7,98 kU/L

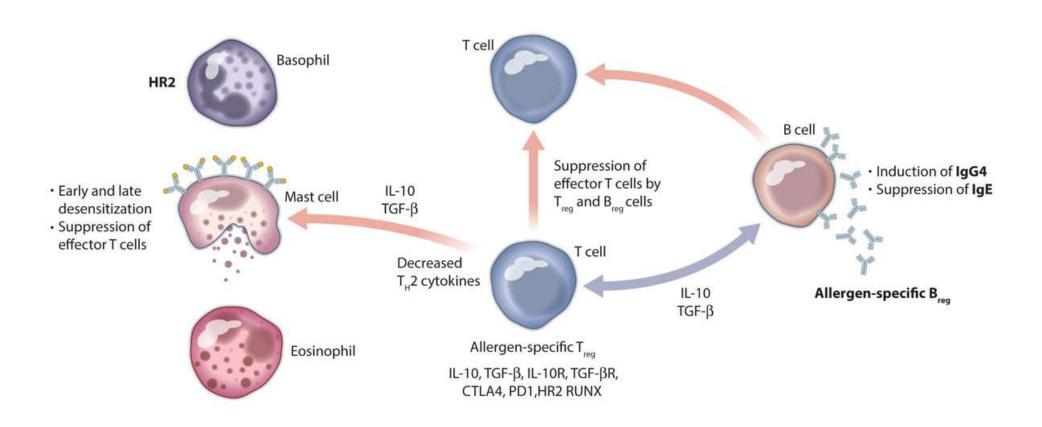

IgE anti-CCD : Des IgE contre des sucres? (Carbohydrates Cross Reactive Determinant)

- Les carbohydrates -> chaine glucidique appelé glycane : fixation sur les protéines par glycosylation.
- Essentiellement fucose-1-3 et/ou du xylose dans le monde végétal
- IgE anti-CCD (chez 20% des sujets polliniques)
 / jusqu'à 75% chez les sujets multi-polliniques)
- Les CCD « classiques » du règne végétal, ne semblent pas être à l'origine de manifestations cliniques (contrairement aux structures Alpha-Gal du règne animal).
- Tests cutanés négatifs
- Mise en évidence d'IgE anti-CCD : à l'aide de la broméline qui présente une structure glucidique de type MUXF3

D'après Euroimmun


Fig 3 - Classical Cross-Reactive Carbohydrate Determinants (CCD)

Test ALEX: BLOCAGE des CCD


(résidus glucidiques de la broméline fixés à l'albumine)

96

Tests réalisés sur le même sérum : sans ou avec inhibition des CCD www.macroarraydx.com

Hypersensibilité immédiate IgE médiée : Les mécanismes de tolérance

Induction de tolérance orale et IgG4 spécifiques

98

Enfant de 13 ans

1^{er} accident avec l'arachide à l'âge de 2 ans. Depuis, 4 à 5 réactions de grade 2. Début de l'Induction

Date de plvt	Prick	lgE arachide (kU/L)	lgG4 arachide (mg/L)	Ratio IgG4/IgE	r ara h1	r ara h2	r ara h3	r ara h8	r ara h9	Dose ingérée durant le TPO (mg d'arachide)
19/01/2016	10	60,3	0,6	4,11	0,21	19,7	0,19	88,6	0,24	66 (douleurs abdo)

En résumé

- L'allergie moléculaire ne doit pas être un pur raisonnement/jeu intellectuel mais un outil efficace pour une meilleure prise en charge
- L'allergologue doit avoir un langage « moléculaire »
 - Maitrise de la somme d'informations fournies (ISAC)
 - Dialogue interactif clinico-biologique
- Les extraits sont encore bien utiles (puces à extraits)
- La suite de la révolution moléculaire
 - Immunothérapie à la carte en fonction du profil de sensibilisation ?

Le dernier mot doit rester à la clinique. « Bien comprendre, c'est bien soigner »

Exploration de l'immunité humorale

Principe : dosage de marqueurs solubles dans le sang pour l'exploration de l'immunité innée (complément) et adaptative (immunoglobulines : Ig).

Examens biologiques	Intérêt clinique
Electrophorèse des protéines	Appréciation globale des Ig (hyper/hypogammaglobulinémie)
Dosage pondéral des Ig Dosage des sous-classe d'IgG	Evaluation quantitative de chaque Ig pouvant notamment orienter vers un déficit immunitaire
Sérologie des antigènes vaccinaux	Exploration des déficits immunitaires
Recherche d'auto-anticorps	Maladies auto-immunes
Recherche d'IgE spécifiques, Dosage de la tryptase et de l'histamine	Exploration des réactions d'hypersensibilité immédiate
Dosage du complément	Déficits immunitaires, Exploration de l'hypersensibilité de type III

Exploration de l'immunité cellulaire

Principe : évaluation quantitative et qualitative des principales populations leucocytaires.

Examens biologiques	Intérêt clinique
NFS	Appréciation globale quantitative des leucocytes
Immunophénotypage T, B, NK	Appréciation quantitative des lymphocytes. Déficits immunitaires
Réponse aux mitogènes et/ou à des antigènes spécifiques	Exploration des déficits immunitaires
Test IGRA (Quantiferon, Elispot)	Exploration des hypersensibilités retardées (type IV)