La puissance électrique

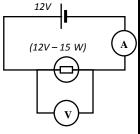
I- <u>Notion de puissance électriq</u>ue

1- Observation

Les lampes électriques de la maison portent tous la même tension en Volt (V), mais elles portent des indications différentes en W (Watt) c'est la puissance électrique.

2- Conclusion

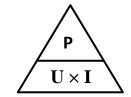
La puissance électrique est une grandeur physique de symbole P et d'unité internationale le Watt (W) . Plus que la puissance d'un appareil électrique est grande plus que son fonctionnement est important et plus que sa consommation de l'énergie est grande .


II- <u>Calcul de la puissance électrique P</u>

Quelle relation existe-t-elle entre U, I et P?

- Résultatas des mesures :

U	I	U.I	P
12 V	1 ,25 A	15 V.A	15 W



2- Observation et conclusion

La puissance électrique P consommée par un appareil se calcule par la formule: P = U.I avec :

- U: la tension entre ses bornes en V
- I : l'intensité du courant qui le traverse en A
- P : la puissance électrique consommée en W

Remarque Puisque P = U.I donc U = P/I et I = P/U

III- <u>Puissance nominale P_N et puissance consomméeP_c</u>

1- Expérience et observation On applique lestensions : 6V – 12V et 14V aux bornes de la lampe

(12V - 15W). - Résultats des mesures:

P_N: indiquée sur l'appareil et Pc caculée par la relation P=U.I

U	I	P_c	$\mathbf{P}_{\mathbf{N}}$	Efficacité
6V	0 ,8A	4,8W	15W	Faible
12V	1,25A	15W	15W	Normale
14V	1,5A	21W	15W	Trop grande

2- Conclusion

- Si U appliquée est égale à U nominale donc $P_C = P_N$ et le fonctionnement de l'appareil est normale.
- Si U appliquée est inférieur à U nominale donc P_C< P_N et le fonctionnement de l'appareil est faible.
- Si U appliquée est supérieur à U nominale donc $P_C > P_N$ et le fonctionnement de l'appareil est très fort ce qui entraine sa détérioration .

IV- Puissance électrique d'un appareil de chauffage

Les appareils de chauffage contiennent des résistances et selon la loi d'Ohm U=R.I et on a ; P=U.I donc $P=R.I.I=R.I^2$ avec R en Ω , I (l'intensité du courant qui le traverse) en A et P en W .

Remarque: la puissance totale P_t d'une installation est égale à la somme des puissances de ses appareils.