Chapitre S3

Dosage des ions Calcium et magnésium contenus dans une eau minérale-dureté

BUT DES MANIPULATIONS

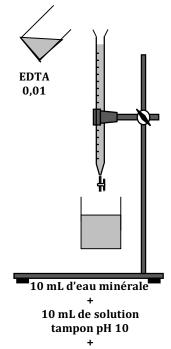
- Rechercher expérimentalement la concentration molaire totale en ions calcium et magnésium d'une eau minérale.
- Déterminer la dureté d'une eau.

PRODUITS CHIMIQUES UTILISÉS

- Acide Éthylène Diamine TétraAcétique symbolisé par le sigle EDTA.
- Eau minérale (Contrex, Hépar)
- Noir Ériochrome T alias NET (indicateur coloré).

TRAVAIL A RÉALISER

Le port de la blouse et des lunettes est obligatoire.


A- Détermination expérimentale de la concentration molaire en ions calcium et magnésium d'une eau minérale.

A1. Préparation de la burette

- Vider l'eau déminéralisée de la burette.
- La rincer avec la solution d'EDTA à 0,01 moL/L. contenu dans le becher étiqueté « solution d'EDTA ».
- Remplir la burette avec cette solution et ajuster au zéro.

A2. Préparation de la solution d'eau minérale à tester

- Verser environ 70 mL d'eau minérale dans un bécher de 100 mL étiqueté « eau minérale ».
- Prélever 10 mL d'eau minérale à l'aide d'une pipette jaugée munie de son dispositif d'aspiration ; les verser dans le becher étiqueté « eau minérale dosage » .
 - Ajouter 10 mL de solution tampon pH 10.
 - Ajouter 4 gouttes de **NET** (Noir Ériochrome T).

10 gouttes de NET

A3. Dosage

A31. Dosage rapide

- Introduire le barreau aimanté dans le bécher étiqueté « eau minérale dosage ».
- Placer le becher sous la burette.
- Agiter doucement la solution à l'aide de l'agitateur magnétique.

• Verser la solution d'EDTA contenue dans la burette selon les quantités indiquées dans le tableau et noter la couleur de la solution.

Volume d'EDTA ajouté (en mL)	0	5	10	12	14	16	18	19	20
Couleur de la solution									

- Arrêter l'agitation.
- Retirer le barreau aimanté à l'aide de la tige aimantée. Le laver puis l'essuyer. Repérer dans le tableau où se situe le changement de couleur de la solution et indiquer par un encadrement le volume V de solution d'EDTA ajouté.

$$\dots \dots mL < V < \dots \dots mL$$

On note V la plus petite valeur de l'encadrement:

A32. Dosage précis

Refaire le dosage pour déterminer le volume équivalent V_E le plus précis possible.

- Compléter la burette avec la solution d' EDTA à 0,01mol/L et ajuster au zéro.
- Nettoyer et essuyer le becher étiqueté « eau minérale dosage ».
- Préparer la solution d'eau minérale à tester comme au 2.
- Introduire le barreau aimanté dans le becher étiqueté « eau minérale dosage » et le placer sous la burette.
 - Agiter doucement la solution à l'aide de l'agitateur magnétique.
 - Verser un volume (V 1) mL de la solution d'EDTA où V est le volume déterminé au 31.
 - Verser goutte à goutte jusqu'au changement de couleur.
 - Noter la valeur du volume précis V_E correspondant au changement de couleur.

$$V_E = \dots mL$$

• Arrêter l'agitation.

• Retirer le barreau aimanté à l'aide de la tige aimantée. Le laver puis l'essuyer.

A4. Concentration molaire totale en ions calcium Ca 2+ et magnésium Mg 2+ de l'eau minérale

La concentration molaire des ions calcium et magnésium se calcule alors en utilisant la formule:

 $C_1 \times V_1 = C_2 \times V_2$ C_1 : concentration molaire de la solution d'EDTA.

 V_1 : volume de la solution d'EDTA à l'équivalence (V_E) .

C₂: concentration molaire des ions calcium et magnésium de l'eau minérale.

V₂: volume de la prise d'essai d'eau minérale.

Calculer C₂ en mol/L arrondi à 0, 0001.

B- Détermination de la dureté de l'eau minérale exprimer en degré hydrotimétrique

Une eau est d'autant plus dure qu'elle contient davantage d'ions calcium Ca²⁺ et magnésium Mg²⁺. La dureté d'une eau est donnée par la concentration molaire totale des ions Ca²⁺ et Mg²⁺ (ions alcalino-terreux).

La dureté d'une eau s'exprime en degré hydrotimétrique français (°f ou TH).

Définition du degré hydrotimétrique d'une eau, noté °f.

Une eau a un °f de X si elle contient X.10 ⁻⁴ mole d'ions Ca²⁺ et/ou Mg²⁺, comptés ensemble, par litre d'eau. Une eau sera dite « dure » si cette valeur dépasse 30.

Un degré français de 1 pour une eau signifie qu'elle contient l'équivalent en moles de calcium et/ou de magnésium qu'une eau contenant 10 mg de carbonate de calcium par litre d'eau, soit 10⁻⁴ mol/L.

-						-
КI	١ ١	V al	emr	evnér	imenta	A
		v u	Cul	CADCI	шиши	·

Déduire de la question 4, la dureté de l'eau étudiée

B2. Valeur Théorique

Lire l'étiquette de l'eau minérale et retrouver les concentrations massiques

des ions calcium Ca2+

mg / L

des ions magnésium Mg²⁺

mg / L

On donne la masse molaire d'une mole d'ion Ca^{2+} : 40,1 g/mol et celle d'une mole d'ion Mg^{2+} : 24,3 g/mol.

Calculer la concentration molaire des ions Ca²⁺ (nombre de moles présentes dans un litre).

 $c_1 = mol / L$

Attention: la concentration massique s'exprime en mg/L et la masse molaire en g/mol.

Calculer la concentration molaire des ions Mg²⁺ (nombre de moles présentes dans un litre).

 $c_2 = mol/L$

Calculer la concentration molaire totale des ions Ca²⁺ et Mg²⁺.

$$c = mol / L$$

La valeur théorique de la dureté de l'eau vérifie la relation D_{th} = 10000 · c

Calculer la dureté de l'eau minérale étudiée.

$$D_{th} = {}^{\circ}f$$

B3. Comparaison

Comparer les valeurs expérimentale et théorique, puis évaluer l'erreur commise sur la mesure de la dureté totale.

Sachant qu'un degré hydrotimétrique d'une eau correspond à une concentration en ions calcium et magnésium de 0,000 1 mol/L, calculer le degrés hydrotimétrique des eaux dont les étiquettes sont proposées ci-dessous:

I. Eau d'Evian

Calcul des concentrations molaires:

M(Ca)=40 g/mol et M(Mg)=24 g/mol

Calculer, en complétant les deux tableaux

ci dessous, les nombres de moles d'ions

_	N			
1	d	Nombre de moles l'ion Magnésium mol)		
40			24	
		Calcul:		
	=_	mo	oles d'ions calci	um et
nétrique (°TH)	1		Calcul:	
ns calcium et				
	moles d'	moles d'ions calcium dans moles d'ions magnésium e production de la company de la comp	Magnésium (g) Calcul: moles d'ions calcium dans un litre d'eau d'E moles d'ions magnésium dans un litre d'eau + = mo itre d'Evian. nétrique (°TH) 1	Magnésium (g) Calcul: moles d'ions calcium dans un litre d'eau d'Evian. moles d'ions magnésium dans un litre d'eau d'Evian moles d'ions magnésium dans un litre d'eau d'Evian + = moles d'ions calcium dans un litre d'eau d'Evian titre d'Evian. Métrique (°TH) 1 Calcul:

L'eau d'Evian à un degré hydrotimétrique de _____oTh

II. Eau de Contrex

Calcul des concentrations molaires:

Calculer, en complétant les deux tableaux ci-dessous, les nombres de moles d'ions calcium et magnésium contenus dans un litre d'eau. Puis compléter les phrases:

Nombre de moles d'ion Calcium (mol) Masse d'ion calcium (g)		mo Ma (m Ma	mbre de bles d'ion ngnésium ol) nsse d'ion ngnésium (g)	
Calcu	ıl :		Calc	ul:
Il y a	moles	d'ions calcium d	ans un litre d'e	au de Contrex.
Il y a	moles	d'ions magnésius	n dans un litre	d'eau de Contrex.
Donc au total, il y a+		=		moles d'ions calcium et
magnésium da	ans un litre de cette e	nu.		
TH Degrés hy	drotimétrique (°TH	1		Calcul:
Concentration magnésium (n	n en ions calcium et	0,000 1		

L'eau de Contrex à un degré hydrotimétrique de _____oTH

