COURS - Les circuits électriques

Description des circuits électriques

- Un circuit électrique est une association de dipôles (composant électrique possédant 2 bornes) dont au moins un générateur et un récepteur (conducteur ohmique, moteur, DEL, lampe ...). Les dipôles sont reliés par des fils de connexion.
- <u>Il existe deux types d'associations de dipôles</u> : l'association **en série** et l'association **en dérivation**.

 Deux dipôles sont associés en série lorsque le même courant les traverse (ou l'intensité du courant a la même valeur).

Deux dipôles sont associés en dérivation lorsque leurs bornes sont connectées aux mêmes nœuds (ou la valeur de la tension est la même).

Un **nœud** est une connexion qui relie au moins trois dipôles entre eux. Sur le circuit ci-contre, B et E sont des nœuds.

La portion de circuit entre 2 nœuds consécutifs est une **branche**. La branche comportant le générateur est appelée branche principale, les autres branches sont appelées branches dérivées.

Une **maille** est un ensemble de branches formant une boucle fermée, ne comportement pas forcément de générateur. Le circuit ci-contre comporte 3 mailles : (ABEFA), (ACDFA) et (BCDEB).

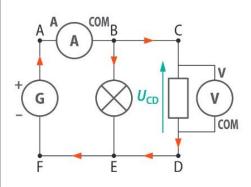
Branches

Branche

L'intensité du courant

Le courant électrique est un mouvement d'ensemble d'électrons, la mise en mouvement des électrons étant assurée par le générateur.

L'intensité du courant est une grandeur quantifiant le nombre d'électrons qui traversent un fil ou un dipôle en une seconde. L'intensité I du courant électrique s'exprime en ampère (A). Elle est mesurée avec un ampèremètre branché en série.


Sens conventionnel du courant : de la borne positive du générateur vers la borne négative.

• La tension électrique

La tension est une grandeur caractérisant une différence d'état électrique entre deux points d'un circuit.

La tension *U* s'exprime en **volt (V)**. Elle se mesure avec un **voltmètre** branché en dérivation.

La tension peut être représentée par une flèche (en bleu sur le schéma ci-contre).

La tension U_{CD} est représentée par une flèche pointée vers C.

Relation entre U_{CD} (flèche vers C) et U_{DC} (flèche vers D) : $U_{CD} = -U_{DC}$

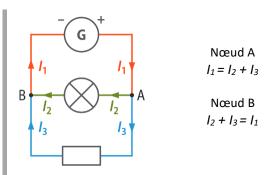
II) Lois des circuits électriques

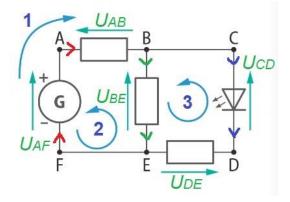
> Relation entre les intensités = loi des nœuds

Dans un circuit en dérivation, la somme des intensités des courants électriques qui arrivent à un nœud est égale à la somme des intensités des courants qui en repartent.

Relation entre les tensions = <u>loi des mailles</u>

Dans une maille (on choisit arbitrairement le sens de parcours de la maille), la somme des tensions est nulle.


Une convention d'écriture importante : pour que les tensions représentées correspondent à des valeurs positives de tension, l'orientation des flèches de tension est importante.


Dans le cas d'un générateur, la flèche représentant la tension est orientée dans le même sens de parcours du courant électrique.

Dans le cas d'un récepteur (conducteur ohmique, moteur, lampe, DEL ...) la flèche représentant la tension est orientée dans le sens opposé au sens de parcours du courant électrique.

Pour additionner les tensions dans la maille, on affecte :

- un signe « + » à une tension si sa flèche est dans le même sens que celui du parcours;
- un signe « » dans le cas contraire.

Ce circuit comporte 3 mailles pour lesquelles on a choisi un sens de maille arbitraire.

(Rappel: la tension aux bornes d'un fil est nulle)

Lois des mailles appliquées :

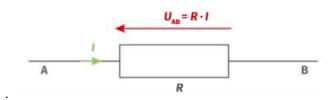
à la maille ACDFA (maille 1):

$$- U_{AB} - U_{CD} - U_{DE} + U_{AF} = 0$$

à la maille AFEBA (maille 2):

$$- U_{AF} + U_{BE} + U_{AB} = 0$$

à la maille BEDCB (maille 3) :

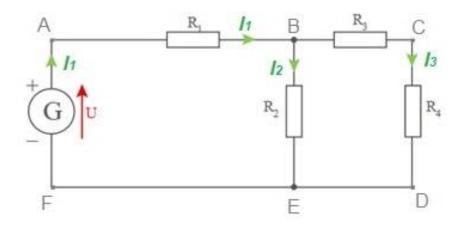

$$-U_{BE}+U_{DE}+U_{CD}=0$$

La loi d'ohm

La loi d'ohm relie la tension U aux bornes d'un conducteur ohmique de résistance R et l'intensité I du courant qui le traverse. Son expression est :

$$U = R \times I$$

U est exprimé en volt (V), R en ohm (Ω), I en ampère (A)



Fiche dipôles et appareils de mesure

dipôle	photo	Symbole normalisé	Fonction
générateur		<u> </u>	Fournir l'énergie électrique (délivre le courant)
conducteur ohmique (résistor ou appelé couramment résistance)			Diminuer l'intensité du courant
Moteur		<u> </u>	Tourner
Diode		——	Les diodes laissent passer le courant que dans un seul sens. La DEL est une diode
DEL (diode électroluminescente)			qui émet de la lumière lorsqu'elle est traversée par un courant.
Lampe			Eclairer

Le multimètre en mode	Mesure	Symbole normalisé	Branchement
Ampèremètre	L'intensité du courant électrique	—(A)—	En série
Voltmètre	La tension électrique		En dérivation
Ohmmètre	La résistance électrique d'un dipôle, d'un matériau	$-\Omega$	Aux bornes du dipôle déconnecté du circuit

Activité 1 : Loi des nœuds, loi des mailles, loi d'ohm

Le générateur délivre une tension continue (constante) de 12,0 V.

Les résistances des conducteurs ohmiques sont notées R₁, R₂, R₃ et R₄.

On a : $R_1 = R_3 = 220 \Omega$ et $R_2 = R_4 = 470 \Omega$.

L'intensité du courant délivré par le générateur est noté l₁.

l₁, l₂ et l₃ sont les intensités des courants circulant dans les conducteurs ohmiques.

On note U_1 , U_2 , U_3 et U_4 les tensions apparaissant aux bornes des conducteurs ohmiques (de résistances respectives R_1 , R_2 , R_3 et R_4).

PREMIERE PARTIE

- 1. Reproduire le schéma du montage.
- 2. Quels sont les lettres majuscules associées aux nœuds électriques du montage?
- 3. Flécher (représenter) sur le schéma les tensions U₁, U₂, U₃ et U₄.
- 4. Représenter sur le schéma et nommer les trois mailles du circuit.
- 5. Comment sont associés les deux conducteurs ohmiques de résistances respectives R₃ et R₄ ? Justifier.

DEUXIEME PARTIE

L'utilisation de multimètres numériques a permis d'obtenir les résultats de mesure suivants :

- à l'aide de la fonction ampèremètre : I_1 = 24,0 mA ; I_2 = 14,3 mA ;
- à l'aide de la fonction voltmètre : U = 12,0 V ; $U_1 = 5,28 \text{ V}$ et $U_2 = 6,72 \text{ V}$.
- 1. a. Quelle loi permet de connaître l'intensité I₃ ? En déduire la valeur de I₃.
 - b. Sous quelle nom connaissiez-vous cette loi au collège?
- 2. a. D'après la loi des mailles dans la maille (ABEFA), exprimer la relation entre U, U_1 et U_2 . Vérifier par le calcul la validité des mesures obtenues.
 - b. Sous quel nom connaissiez-vous cette loi au collège?
- 3. En appliquant la loi d'ohm, calculer la tension U₄ présente aux bornes du conducteur ohmique de résistance R₄.
- 4. Calculer la tension U₃ présente aux bornes du conducteur ohmique de résistance R₃ en utilisant deux méthodes. Préciser les méthodes utilisées, détailler les calculs effectués et comparer les résultats obtenus.