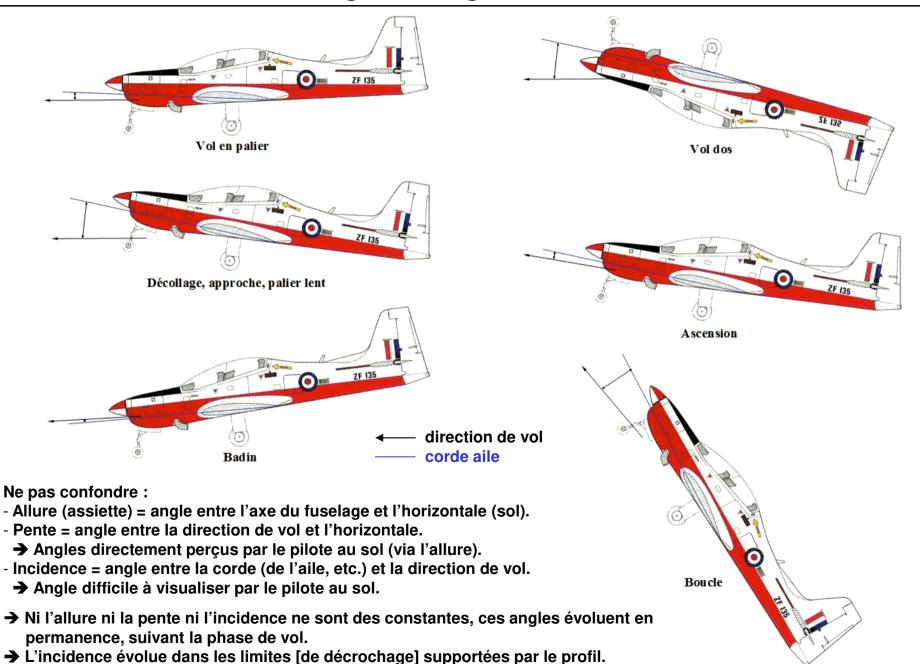

Mémento de mécanique du vol

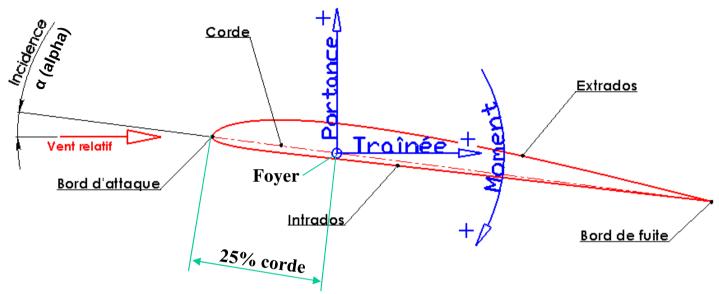
© F. Aguerre, 04/2018

Angles longitudinaux

Vé longitudinal = angle entre la corde de l'aile et celle du stab = Calage aile – Calage stab


Ne pas confondre:

- Incidence = angle aérodynamique de la corde d'une surface [d'une voilure, d'un fuselage] avec la direction de vol.
- Calage = angle mécanique (= de construction) d'une corde [de voilure] avec l'axe médian du fuselage.


Rôles:

- Incidence aile : fournit la portance principale = poids (en palier) = poids * facteur de charge (en manœuvre)
- Incidence stab : fournit une portance pour équilibrer l'avion pilote l'incidence de l'aile.
- Calage aile : donne au fuselage l'allure visuelle attendue (queue haute, droite ou basse), pour une portance d'aile donnée.
- Calage stab (+ trim de profondeur) : donne au stab l'incidence nécessaire à sa portance d'équilibre.

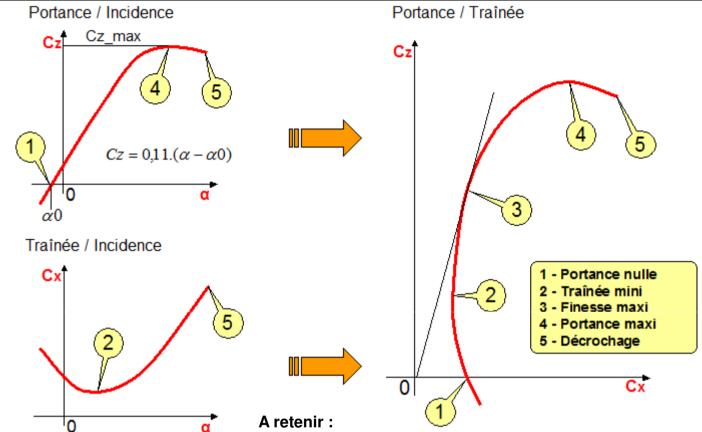
Angles longitudinaux

Décomposition des forces autour du profil

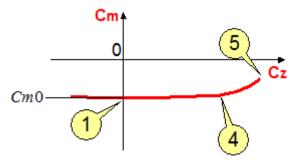
Ne pas confondre:

- Foyer (F): point d'application de la portance, toujours à 25% quel que soit le profil, autour duquel le moment est constant.
- Centre de poussée (CP) : point d'application de la résultante aéro (= portance + traînée + moment). Position relative à celle du foyer, mais dépendant de la forme du profil et inversement proportionnelle à la portance.
- → notion strictement équivalente à celle du foyer + moment, mais dépourvue de sens physique (position pouvant se trouver hors du profil dans certains, identique à celle du foyer et invariante dans d'autres cas...), à ne pas utiliser sauf à vouloir rendre incompréhensible la mécanique du vol !

Les forces :


- Portance (Rz): proportionnelle à l'incidence, traduite par le coefficient de portance (Cz).
- Traînée (Rx): variable en fonction de l'incidence, traduite par le coefficient de traînée (Cx).
- Moment (M): indépendant de l'incidence, traduit par le coefficient de moment (Cm = constante).

Ces forces sont toutes proportionnelles à pression dynamique q (= densité de l'air * carré de la vitesse de vol) :


$$F = \frac{1}{2} \cdot \rho \cdot V^2$$
. Surface . Coeff

→ En mécanique du vol, on peut donc simplifier les équations par « q » et se concentrer uniquement sur les surfaces et les coefficients.

Polaires profil simples

Moment autour du foyer / Portance

- Seuls Cx, α0, Cm0, Cz min et Cz max dépendent du profil.
- Cz est proportionnel à α, d'un facteur (0.11) indépendant du profil.
- Cz évolue entre les deux butées Cz_mini et Cz_max (décrochages -/+) et est totalement indépendant du profil → il est imposé par les conditions de vol (poids * facteur de charge), modulées par les caractéristiques de l'aile (surface et allongement) → cf. équation de Rz (p. 12 et 13.
- → Paradoxe (difficile à appréhender mais essentiel!) : même si la portance est générée par l'écoulement de l'air autour du profil, elle lui est en fait imposée par le pilote (via α) et ne dépend absolument pas dudit profil. Ce dernier sert uniquement à faciliter l'écoulement de l'air (pour réduire le Cx [à un Cz donné], améliorer le Cz max ou le Cz min, avoir un Cm0 positif, etc.).

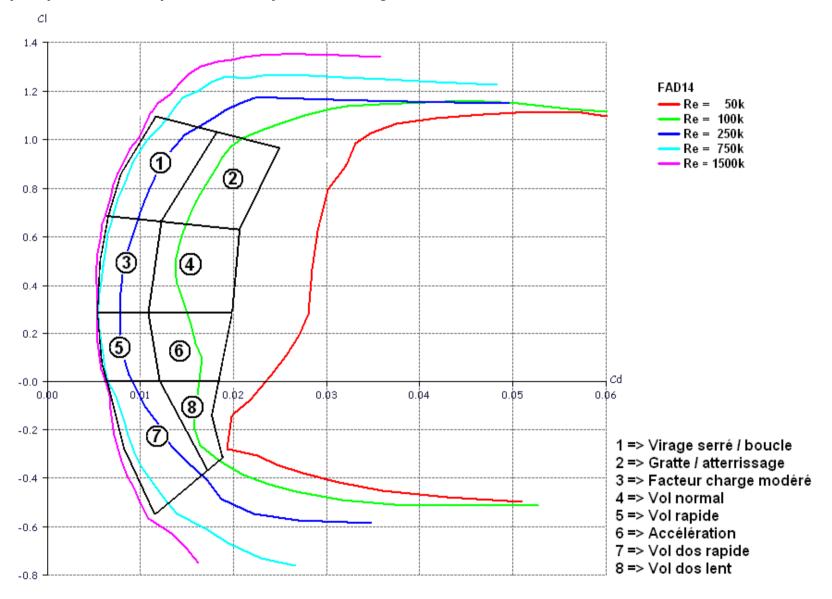
Effet du Reynolds (Re)

Aux échelles modélistes, le fonctionnement du profil est très sensible au Re. Re = 68.Corde(mm).Vitesse(m/s)

Fonctionnement normal (hors décrochage):

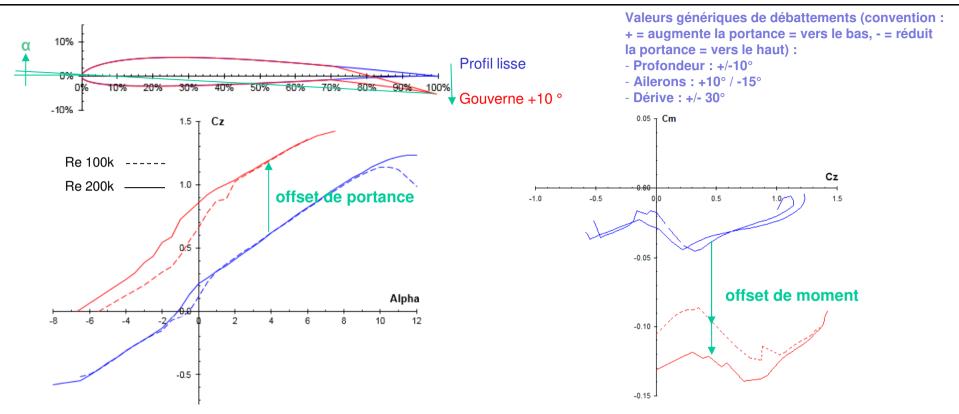
- Cz : proportionnel (= droite) à l'incidence : Cz = 0,11.(α α 0), avec α 0 = constante.
- Cx : courbe régulière et réduite (→ bien plus important que le Cz max).
- Cm : constante (ou proche) = Cm0.

Profil inadapté au Re (Re ≤ Re critique) :


- Cz/α : courbe irrégulière et de pente différente de 0,11, α0 variable en fonction du Re.

- Cx : courbe irrégulière. Re = 50 000 : fonctionnement anormal - Cm : variable en fonction du Re. Cz ou de α. Re = 100 000: fonctionnement limite → Reynolds critique Eppler 201 MMM

- → a0 et Cm0 : constantes propres à chaque profil et dépendant principalement de sa cambrure (nuls si cambrure nulle)
- → Utiliser Xfoil (en direct, ou sous Profili, XFLR, PredimRC, etc.) pour générer ces polaires (attention au nCrit).
- → Le premier critère de sélection d'un profil est d'être adapté aux bas Reynolds de l'enveloppe de vol. Sinon, forte dégradation des qualités de vol, notamment décrochage « sournois », réponse à la profondeur non linéaire (ex. : flou autour du neutre) et différente suivant la phase de vol (ex. : apparition d'instabilité à basse vitesse).
- → Généralement, plus le Re est faible est plus le profil doit être fin et peu cambré pour fonctionner correctement.
- → L'adaptation au Re s'améliore avec un turbulateur (zig-zag, rugosité élevée, pneumatique, à vortex, etc.).

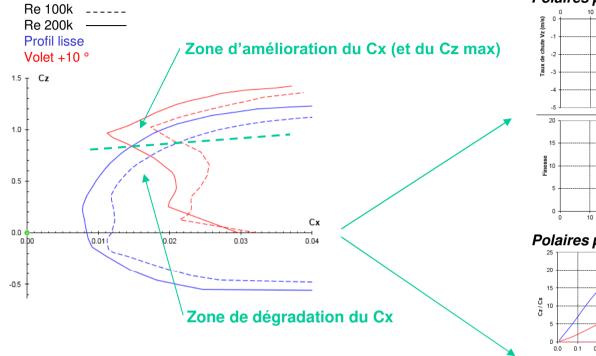

Enveloppe de fonctionnement en Cx/Cz d'un profil

Exemple: profil d'aile de planeur 60" / dynamic soaring

- → On choisit le profil en fonction de l'enveloppe de vol en Reynolds et Cz de la voilure.
- → Chaque profil n'est pas bon ou mauvais en absolu, mais est juste plus ou moins adapté à chaque utilisation.

Les gouvernes

Le braquage d'une gouverne modifie l'incidence profil (via la nouvelle position de bord de fuite) et sa cambrure, donc :


- le Cz profil : change la portance locale de la voilure. → Contrairement à l'intuition commune, l'action d'une gouverne ne résulte pas directement de la déflexion du flux d'air par son braquage, mais du changement d'incidence profil.
- le Cm profil : modifie l'équilibre longitudinal (cf. pages ci-après), en opposition de sens avec le changement de Cz.
- le Cx profil : élément clé quand il s'agit de volets (cf. ci-après) ou d'ailerons (→ nécessite du différentiel si asymétrie).

Le résultat global (Cm vs Cz) sur l'équilibre longitudinal de l'avion dépend de la distance entre le CG et le foyer de la voilure concernée [par le braquage de la gouverne] :

- distance réduite (ailevons d'aile volante, volets d'aile sur appareil à petit volume de stab) : tendance à piquer quand la gouverne descend, et inversement.
- distance « moyenne » (volets d'aile sur appareil à volume de stab « moyen ») : comportement neutre.
- distance importante : tendance à cabrer pour la voilure devant le CG (stab canard, volets d'aile sur appareil à gros volume de stab) et à piquer pour la voilure derrière le CG (stab classique) quand la gouverne descend, et inversement.

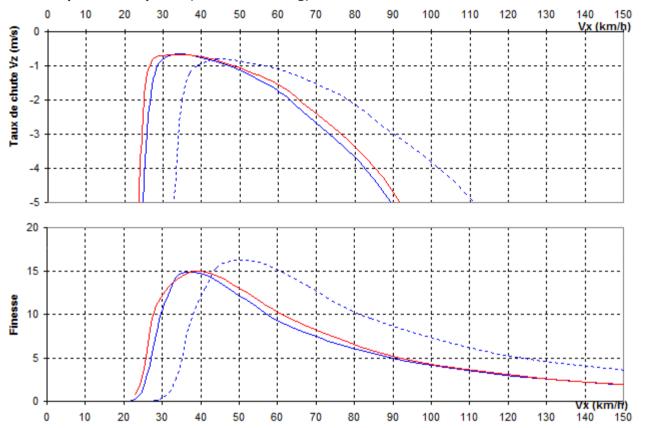

Cas particulier des volets de courbure

Exemple: planeur 60" avec profil SD7003

La courbure est une « commande » de traînée → permet de moduler le Cx profil, en plus (freinage) ou en moins (gain de perfo) suivant le point de fonctionnement (Cz, Re).

Le gain en Cz_max n'est pas significatif aux échelles modélistes.

La courbure ne change pas le Cz de vol, qui résulte du produit vitesse * poids * facteur de charge → paradoxe apparent, l'incidence de l'aile (pilotée par : offset Cm profil + consigne de profondeur, via ordre pilote + compensation) s'adapte pour conserver l'équilibre.


Attention de :

- Bien choisir la courbure pour le point de fonctionnement souhaité → réglage délicat et long à mettre au point pour obtenir un gain réel, pas toujours rentable avec certains profils (à étudier au cas par cas).
- D'utiliser la courbure sur toute l'envergure sur une machine de perfo → sinon, introduction de vrillage.

Effet du ballast / charge alaire

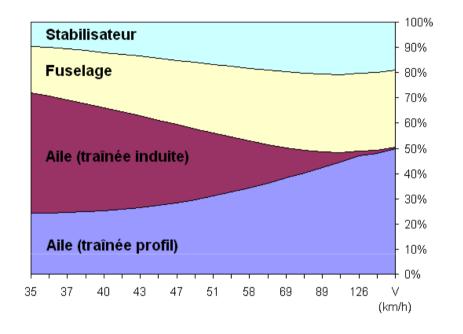
Exemple: planeur 60"

NACA 1410, m = 0.7 kg

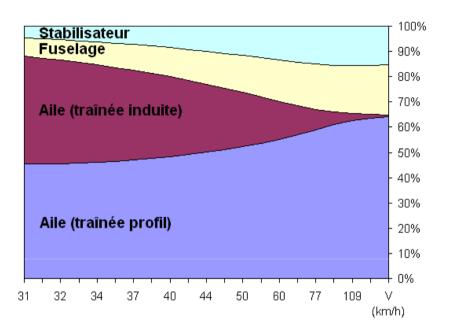
NACA 1410, m = 1.2 kg

TP74 60", m = 0.7 kg

Passer d'un profil « basique » à un profil « au top » améliore les perfos, certes... mais juste un peu.


Jouer sur la charge alaire accroît très significativement le domaine de vol :

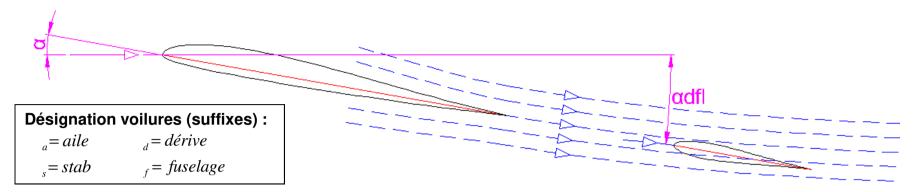
- A vide : meilleur taux de chute mini et plus basse vitesse de vol mini.
- Ballasté : meilleure finesse max et, surtout, moindre taux de chute et meilleure finesse en vol rapide.


Plus d'infos ici: http://rcaerolab.eklablog.com/profil-fin-versus-ballast-p1269038

Traînée(s)

Contributeurs à la traînée (avion de transition)

Contributeurs à la traînée (planeur de perfo)


Ne pas croire que:

- Il existe un profil miracle « bon « dans toutes les disciplines et toutes les conditions de vol.
- Remplacer un profil « moyen » par un profil « au top » fait aller significativement plus vite.
 En conception, il y a bien plus à gagner sur la traînée induite (→ allongement et forme de l'aile) et la traînée de fuselage.
 En utilisation, c'est sur la charge alaire et la courbure qu'il faut travailler → cf ci-avant.

Retenir qu'un bon profil est avant tout un profil bien adapté au domaine de vol de l'avion :

- Courbe de Cm bien plate aux Reynolds de vol de l'avion.
- Courbe de Cz/α bien droite aux Reynolds de vol de l'avion.
- → Le profil n'est pas le seul élément clé des perfos, et de loin. De plus, s'il est mal adapté au domaine de vol de l'avion, un profil [aussi performant soit-il par ailleurs] compromettra les qualités de vol.
- → L'avion est un tout, le résumer à son profil d'aile est une erreur, à tous points de vue (performances, comportement).

Equations de base

Toutes voilures (ailes, stab, dérive, fuselage) :

$$Rz_{voilure} = \frac{1}{2} . \rho . V^2 . S_{voilure} . Cz_{voilure} \qquad Cz_{voilure} = A_{voilure} . Cz_{profil} \\ Rx_{voilure} = \frac{1}{2} . \rho . V^2 . S_{voilure} . Cx_{voilure} \qquad A_{voilure} = \frac{\lambda_{voilure}}{\lambda_{voilure}} + 2 \\ M_{voilure} = \frac{1}{2} . \rho . V^2 . S_{voilure} . Cm_{profil} \qquad \lambda = allongement = \frac{Envergure^2}{Surface} \\ X_{CP\%} = 25\% - \frac{Cm}{Cz} \qquad C = corde \\ \rho = masse volumique air$$

Stab:

Perte d'efficacité du stab dans sillage de l'aile (Munk) :

$$k = 1 - \varepsilon' \approx 1 - \frac{4}{2 + \lambda_a}$$

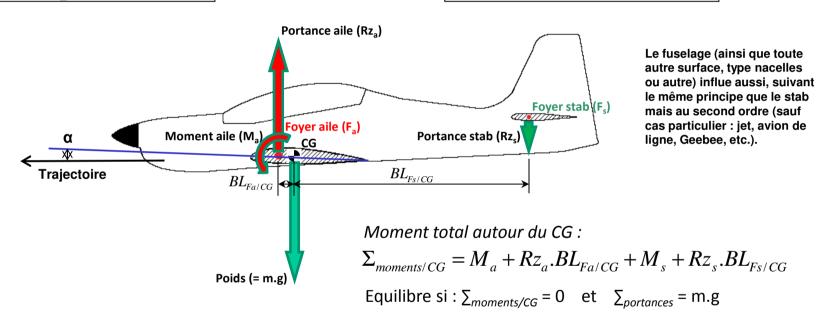
Efficacité relative du stab par rapport à l'aile :

$$Ceff_s = \frac{A_s.k}{A_a} \approx \frac{A_s}{A_a}.(1 - \frac{4}{2 + \lambda_a})$$

Efficacité de portance (pente de la droite Cz/α de la voilure versus celle du profil) :

- A (toutes voilures) : liée à l'allongement → portance dégradée par les tourbillons marginaux, d'autant moins que le saumon est « loin » de l'emplanture (= allongement important).
- k (stab) : si stab en aval de l'aile, subit la déflexion de sillage (incidence stab varie moins vite que celle de l'aile). Si pas de déflexion (canard, stab en amont de l'aile) : k = 1.
- → Notions similaires au rendement : A ou k valent au maximum 1 (allongement infini ou pas de déflexion).
- → Ne pas confondre le sillage défléchi avec la fine couche turbulente en aval bord de fuite.

V = vitesse de vol

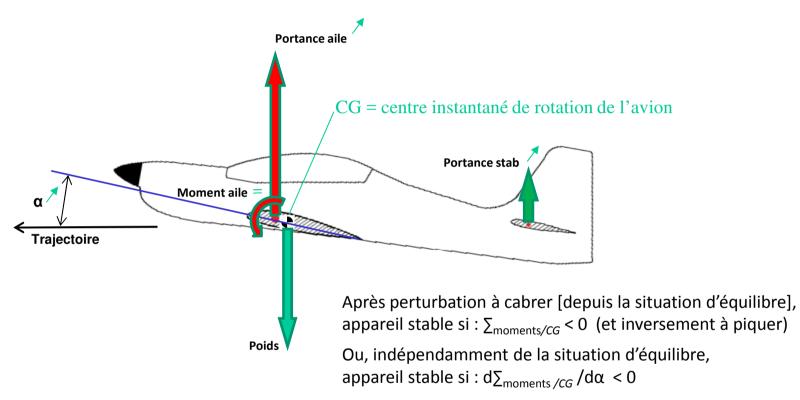

Equilibre longitudinal – vision détaillée

Aile
$$Rz_{a} = \frac{1}{2} . \rho . V^{2} . S_{a} . Cz_{a}$$

$$M_{a} = \frac{1}{2} . \rho . V^{2} . S_{a} . C_{a} . CmO_{a}$$

Stab
$$Rz_{s} = \frac{1}{2} . \rho . V^{2} . S_{s} . Cz_{s}$$

$$M_{s} = 0 \quad (CmO_{s} = 0)$$

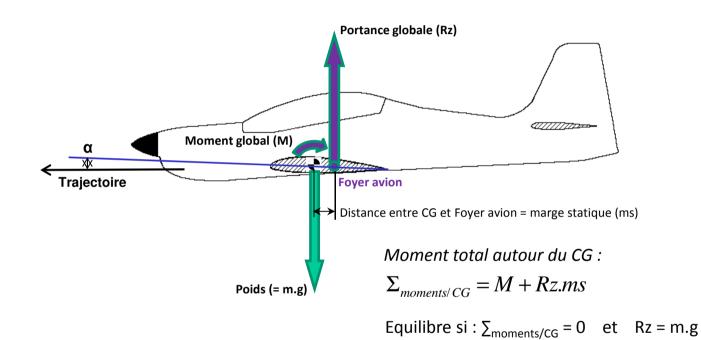

Portance de stab (via son calage de construction + trim éventuel, dans le flux dévié par l'aile) :

- Réalise l'équilibre des forces et des moments autour du CG, dépend de :
 - . Cm0 profil aile (de sens inverse dans le cas d'une aile volante... dépourvue de stab).
 - . efficacité relative de portance du stab par rapport à l'aile.
 - . ratio des bras de leviers des foyers ailes et stab par rapport au CG. \succeq Volume de stab, si $BL_{Fa/CG}$ suffisamment petit devant BL_s (= $BL_{Fa/CG}$ + $BL_{Fa/CG}$)
- N'est généralement pas nulle, sauf pour un seul point de l'enveloppe de vol.

Cas particuliers:

- Aile volante : pas de stab (Rz_s = 0) → CG devant foyer aile et équilibre réalisé par le moment aile.
- Canard : stab devant l'aile → BL_{Fs/CG} négatif, Rz_s du même ordre de grandeur que Rz_a.

Stabilité longitudinale – vision détaillée

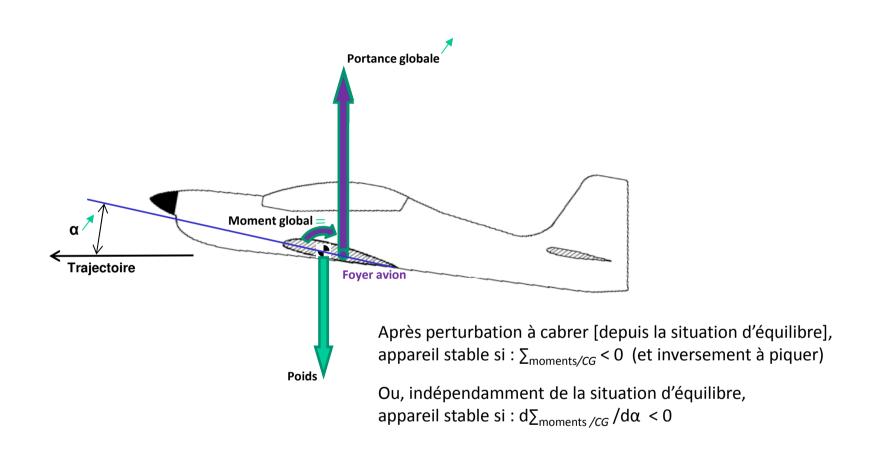

Tendance à revenir à l'équilibre d'autant plus marquée que le CG se situe à l'avant de l'appareil.

Le résultat (moment de rappel autour du CG) :

- ne dépend pas du Cm0 profil, car le Cm0 (donc le moment) ne varie pas avec l'incidence (dCm0/d α = 0).
- dépend du stab (idem pour fuselage, en second ordre) :
 - . efficacité relative de portance du stab par rapport à l'aile.
 - . volume de stab.

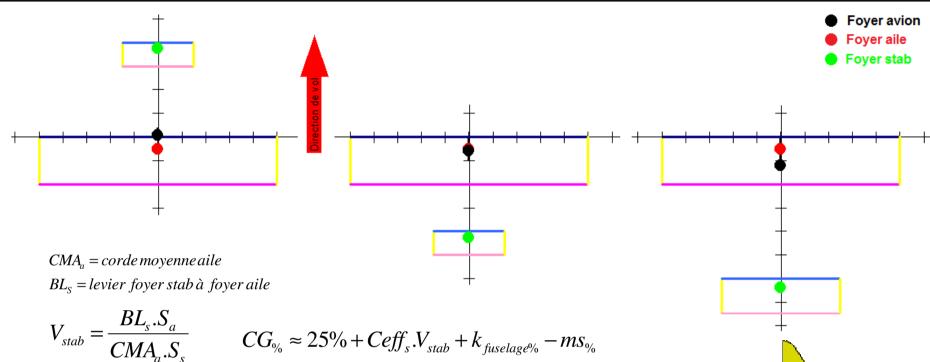
- → Permet le calcul du foyer aile stab
- → Plus le CG est proche du foyer aile et plus le bras de levier du stab avec le CG est grand devant celui de l'aile, et plus le stab génère un moment de rappel supérieur au moment inverse de l'aile.

Equilibre longitudinal – vision condensée au foyer avion

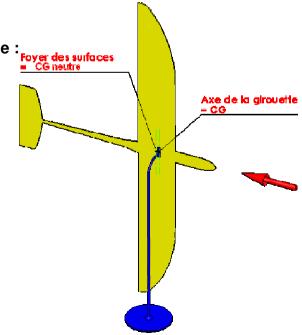


Modélisation identique physiquement et mathématiquement à la vision détaillée.

Très pédagogique car intuitive et générique : reflète directement toutes les configuration d'avion, y compris le cas particulier de l'aile volante (dans ce cas, foyer avion = foyer aile, puisque pas de stab).


Mais ne permet pas de comprendre l'origine du foyer ni ne traduit le travail du stab... pour cela il faut détailler le fonctionnement de chaque voilure (cf. planches précédentes).

Stabilité longitudinale – vision condensée au foyer avion


Tendance à revenir à l'équilibre d'autant plus marquée que la marge statique est importante (CG avant). Ne revient pas à l'équilibre si MS = 0 (CG neutre). Part en sucette si MS < 0... (CG arrière).

Stabilité longitudinale - synthèse

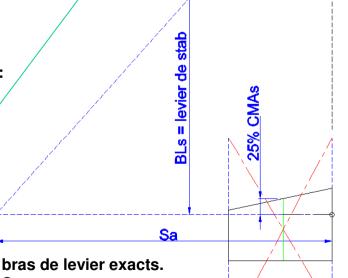
Le CG se positionne sur la corde moyenne de l'aile (en % de sa corde) et dépend de

- Foyer avion, lui-même dépendant de :
 - . Foyer aile (25% de la corde moyenne de l'aile).
 - . Pondéré par le volume de stab (V_{stab} <0 si canard, =0 si aile volante) et l'efficacité relative de portance du stab par rapport à l'aile (Ceff_s)
 - . Pondéré par le fuselage (idem stab, mais 2^{nd} ordre, $k_f \simeq -5\%$ à -15%).
- Marge statique, typiquement :
 - . Voltige : 0 (centrage sur foyer = limite arrière).
 - . Tous usages : 5% de la corde moyenne de l'aile.
 - . Vol très stable : 10% de la corde moyenne de l'aile.
 - . Limite avant, conditionnée par capacité du stab (ou du Cm0 aile volante) à réaliser l'équilibre : environ 15% à 40% suivant les configurations.
- → L'avion est une girouette qui pivote autour du CG (idem en lacet)...
- → Oublier SVP le centrage au tiers de la corde ou toute relation entre CG et profil!

Stabilité longitudinale - détermination

SS. CMAa ms = 5% CMAa Kf = 10% CMAa

Quatre méthodes de détermination :


- Calcul simplifié (cf. ci-avant), avec Kf générique (type Lapresle) :

$$CG_{\%} \approx 25\% + Ceff_s N_{stab} - 10\% - 5\%$$

→ A reporter sur corde moyenne aile (CMA_a).

- Méthode graphique : report des cordes et surfaces.
- → Résultat identique à celui du calcul simplifié.
- -- Méthode pragmatique : réaliser une girouette plane.
- Calcul complet : intégrant le fuselage de manière formelle et les bras de levier exacts.
- → Le plus précis, mais trop lourd à développer, utiliser PredimRC.

 Fortement conseillé pour tous les appareils à « gros » fuselage (jet, avion de ligne, etc.) et ceux à volume de stab négatif (canard) ou important (Pou du Ciel, oldtimer, etc.).

Equilibre longitudinal – synthèse et calculs

Aile

Incidence aile au Cz aile de réglage :

$$\alpha k_{aile} = \frac{Cz_{a_profil}}{0.11} + \alpha 0_a = \frac{9.1}{A_a}.Cz_{a_reg} + \alpha 0_a$$

Aile volante

Cm0 profil au Cz aile de réglage :

$$Cm0 = \frac{ms\%}{CMA_a}.Cz_{a_reg}$$

Stab

Sillage d'aile

as

Adfil

Calage de stab : $\alpha \kappa_s = \alpha_{dfl} + \alpha_s + \alpha 0_s$

Soit, en développant : $\alpha \kappa_s = 9.1.(\varepsilon') \cdot \frac{Cz_{a_reg}}{A_a} + \frac{Cz_s}{A_s} + \alpha 0_s$

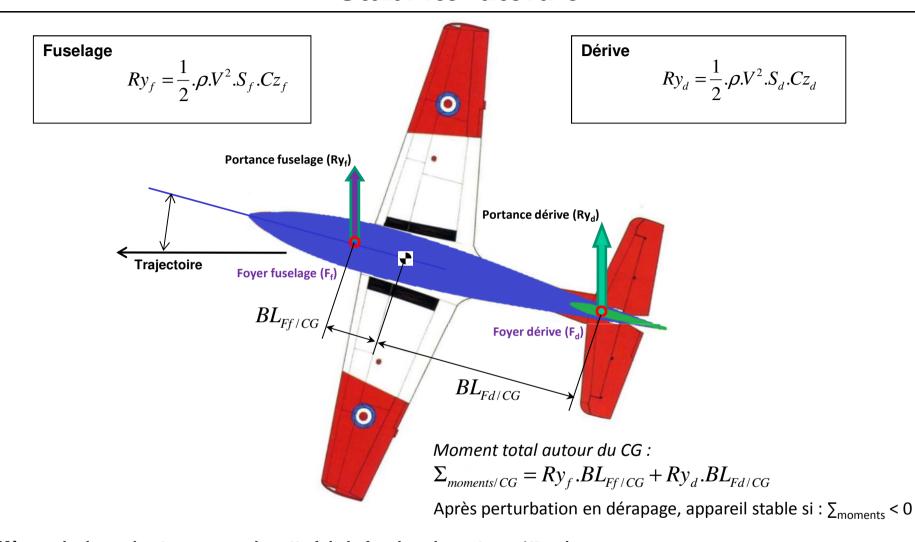
Avec:

Angle de déflexion de sillage (vaut 0 pour un canard) : $\alpha_{dfl} = \varepsilon'.9,1.\frac{Cz_a}{A_a}$

Incidence du stab dans le flux d'air local (défléchi par l'aile) : $\alpha_s = 9,1.\frac{Cz_s}{A_s}$

Cz de stab nécessaire à réaliser l'équilibre $Cz_s \approx \frac{Cz_a.(xCG-0.25)+Cm0}{V_{stab}}$

Calage de stab (ou Cm0 profil aile volante) : choisi pour équilibrer le vol à un Cz aile donné (= Cz réglage).


- → Autant de calages possibles que de Cz d'équilibre : la commande de profondeur est une commande de Cz (= incidence).
- Tributaire du calage d'aile (via la déflexion de sillage d'aile) et de son Cm0 : pas forcément adapté à la phase de vol volets baissés (change α0, Cm0 et calage aile), avec un résultat différent suivant les cas (à piquer, neutre ou à cabrer).
 - Nécessite une compensation à la profondeur (trim ou mixage).
 - Calcul complexe, utiliser PredimRC... ou mettre à 0° et trimmer en vol autant que nécessaire, pour chaque phase.

Calage d'aile : choisi pour donner l'allure de fuselage au Cz de réglage.

→ Idéalement : fuselage aligné avec la trajectoire à ce Cz.

Valeur typique de Cz de réglage = Cz moyen de l'enveloppe de vol = généralement 0.3.

Stabilité latérale

Même principe qu'en tangage, mais cette fois le fuselage importe au 1er ordre.

Stabilité OK si foyer latéral devant CG.

Stabilité KO si foyer latéral derrière CG → le CG étant déjà conditionné par l'axe de tangage (prioritaire), se résout en augmentant la surface de dérive et/ou son bras de levier (ou en raccourcissant le fuselage).

Si aile en flèche (se mesure à 25% des cordes) : différentiel de traînée entre aile avançant et reculant → ajoute un peu de stabilité en lacet si flèche vers l'arrière, en enlève si flèche inverse.

Mise au point, en pratique

A chaque paramètre un seul réglage approprié :

- Un excès / défaut de stabilité (voir symptômes en page suivante) se résout en reculant / avançant le centrage.
- Une tendance à piquer / cabrer se résout par le recalage ou le trimmage (équivalent) de la profondeur en sens inverse.
- Un vol queue basse / haute se résout en augmentant / réduisant le calage de l'aile par rapport au fuselage.
- Un vivacité excessive / insuffisante sur un axe se résout en adaptant le débattement de la gouverne concernée.
- Les angles moteur (piqueur et anti-couple) se règlent pour qu'une variation du régime moteur ne modifie pas l'équilibre, sur tous les axes.
- → Ne pas confondre la fonction (= effet direct) d'un réglage avec ses effets induits : par ex., en plus d'augmenter la stabilité du vol, avancer le centrage réduit la vivacité en tangage et donne un équilibre plus piqueur (et inversement). Mais ce n'est pas pour autant qu'il faut corriger ces effets en jouant sur le centrage, car aucun autre réglage que le centrage n'influe sur la stabilité.
- → Il y a donc un enchaînement logique dans les réglages : le trim et le débattement de profondeur s'adaptent [pour régler, respectivement, l'équilibre et la vivacité en tangage] au centrage, lui-même réglé pour la stabilité désirée... et surtout pas l'inverse !
- → Après trimmage, la gouverne de profondeur n'a à être alignée avec le plan fixe que si le calage de stab a correctement été calculé et réalisé. Sinon, aucune importance, le seul problème est esthétique.
- → Si la stabilité en lacet est insuffisante, ne pas avancer le CG (au détriment de comportement longitudinal) mais agrandir la dérive ou ajouter une ou deux sous-dérives (typique des jets et ailes volantes à gros fuselage à l'avant).

Trois tests de vérification du centrage : mise en piqué, mise en cabré, mise en vol dos. Tous consistent à positionner l'appareil à une incidence significativement différente de celle d'équilibre, pour ensuite observer le retour à l'équilibre.

Quel que soit le test :

- Au préalable du test, régler l'équilibre longitudinal (= trimmer la profondeur pour voler droit naturellement, c.a.d. manches lâchés) à une vitesse de vol relativement basse (donc Cz et incidence d'équilibre plutôt élevés), sans être trop proche du décrochage.
- Objectif: avoir un écart le plus important possible entre la condition de test et celle d'équilibre → test plus lisible.
- Sur un avion, le trimmage de la profondeur puis le test se font avec le moteur le plus réduit possible → sinon, un angle piqueur mal réglé va interférer sur le test.
- Ces tests permettent de conclure de manière qualitative si l'appareil est centré avant, neutre ou arrière, mais pas de quantifier de combien le centrage est avant. Pour cela : reculer le centrage jusqu'à la neutralité (CG = foyer), puis ensuite avancer le centrage (le foyer donne le point de départ qui permet de quantifier la marge statique).

Quelques repères qualitatifs

Axe de tangage :

- Avion trop stable : retour rapide à l'équilibre dès que l'avion s'écarte du vol horizontal et/ou de sa vitesse de vol naturelle. Nécessité de fortement pousser pour voler au badin, soutenir à cabrer en approche lente, pousser sur le dos. En planeur, nécessité de fortement trimmer la profondeur à cabrer lors des vols en condition peu porteuse, et au contraire très à piquer dans les conditions « fumantes ». Effet de sur-réaction lors d'une traversée de turbulence, avec l'initiation du phénomène de « montagnes russes », typique des appareils de début réglés trop stable (le tristement fameux centrage au tiers de la corde, alors que volume de stab important).
- Avion normalement stable : a tendance à gommer modérément les turbulence, revient tranquillement à une trajectoire équilibrée une fois le manche lâché, demande des corrections modérée au manche ou au trim de profondeur lors des écarts de vitesse ou en vol dos.
- Avion neutre : en air non turbulent, conserve indéfiniment la trajectoire manche lâché, que ce soit à plat, en vol dos, en montée ou en descente. Le trim de profondeur reste valable pour toutes les conditions de vol, sans re-réglage.
- Avion instable : impossible de conserver une trajectoire droite naturellement, il faut surpiloter en permanence, sensation d'être « sur des œufs » avec amplification de la moindre action en tangage.

Axe de lacet:

- Avion suffisamment stable : l'axe de lacet se fait oublier en vol « lambda ». En voltige ou en spirale, répondant correct de la dérive.
- Avion insuffisamment stable : tendance à se mettre en dérapage au braquage brusque des ailerons, avec sens de dérapage dépendant de l'excès ou du défaut de différentiel. Virages inconfortables, dandinement ou dérapage persistant en lacet en sortie de virage.

A retenir:

- Si le centrage influence sensiblement le comportement longitudinal et le confort de pilotage, son impact sur les performances est marginale, contrairement aux idées reçues. → ne pas confondre ressenti aux manches et perfos. Seule exception, les ailes volantes : CG trop avant => ailevons fortement relevés = > Cz max profil réduit => traînée importante et pas de marge entre le Cz de vol et le Cz max => « marsouinage » dès qu'on tire sur la profondeur.
- Les débattements s'adaptent au centrage, et non l'inverse : si les réactions en tangage sont trop vives, réduire le débattement de profondeur avant de remettre en cause le centrage (et inversement).