

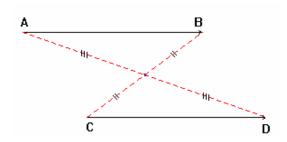
المتجهات و الإزاحة

I تساوي متجهتين :

1) – تعریف 🛈 :

إذا كان $\overrightarrow{AB}=\overrightarrow{CD}$ فإن [AD] و [AD] لهما نفس المنتصف $\overrightarrow{AB}=\overrightarrow{CD}$ إذا كان [AD] و [BC] لهما نفس المنتصف فإن

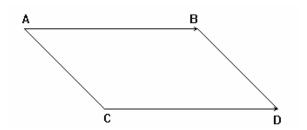
* / مثال :



2) – تعریف 🖸 :

إذا كان $\overrightarrow{AB} = \overrightarrow{CD}$ فإن الرباعي \overrightarrow{AB} متوازي الأضلاع إذا كان رباعي $\overrightarrow{AB} = \overrightarrow{CD}$ متوازي الأضلاع فإن $\overrightarrow{AB} = \overrightarrow{CD}$

* / مثال :



: خاصية – (3

: يعني أن
$$\overrightarrow{AB} = \overrightarrow{CD}$$

$$\left(\mathrm{AB} \right) / / \left(\mathrm{CD} \right)$$
 و \overline{CD} لهما نفس الإتجاه أي \overline{CD} و \overline{AB} --

و
$$\overrightarrow{CD}$$
 لهما نفس المنحى . \overrightarrow{AB} --

.
$$AB = CD$$
 و $AB = CD$ لهما نفس المنظم (المعيار) أي $AB = CD$

4) - المتجهة المنعدمة:

نعدمة :
$$\overrightarrow{AA}=\overrightarrow{BB}=\overrightarrow{CC}=\overrightarrow{O}$$
 (في $\overrightarrow{AB}=\overrightarrow{O}$ فإن : $\overrightarrow{AB}=\overrightarrow{O}$ و $\overrightarrow{AB}=\overrightarrow{O}$ منطبقتان)

5) - مقابل متجهة:

.
$$\overrightarrow{BA}$$
 هي المتجهة \overrightarrow{AB} ه المتجهة $\overrightarrow{BA}=-\overrightarrow{AB}$. و نكتب

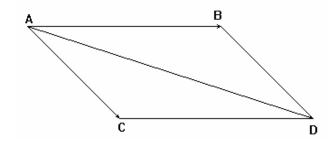
6) - مجموع متجهتين:

 \overrightarrow{AD} مجموع المتجهتين \overrightarrow{AB} و \overrightarrow{AB} هو المتجهة مجموع المتجهتين ABDC بحيث الرباعي

* / مثال 1

و متجهتان غیر منعدمتین . متجهتان عیر منعدمتین

 $\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{AC}$: بحيث D لننشئ النقطة



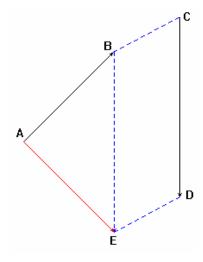
* / مثال 2

و متجهتان غیر منعدمتین \overrightarrow{CD} و متجهتان ع

. $\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{CD}$: نشئ E لنشئ

 $\overrightarrow{BE} = \overrightarrow{CD}$: بحیث E من أجل هذا سننشئ

أي BEDC متوازي الأضلاع.



 $\overrightarrow{AE} = \overrightarrow{AB} + \overrightarrow{CD}$

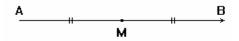
7) - ضرب متجهة في عدد حقيقي:

نسمي المتجهة \overline{AB} متجهة غير منعدمة و \overline{AB} عدد حقيقي . \overline{AB} نسمي المتجهة \overline{AM} جداء المتجهة \overline{AB} في العدد الحقيقي \overline{AM} ، إذا كانت $\overline{AM} = k \, \overline{AB}$. $\overline{AM} = k \, \overline{AB}$. $\overline{AM} = k \, \overline{AB}$. \overline{AB} و \overline{AB} و \overline{AB} لهما نفس المنحى . \overline{AB} عان : $\overline{AB} = -k \, \overline{AB}$ و \overline{AB} و \overline{AB} لهما منحى معاكس. \overline{AB} عان : \overline{AB} . \overline{AB} .

8) - المتجهة و المنتصف:

و B و M ثلاث نقط
$$\overrightarrow{MA} + \overrightarrow{MB} = \overrightarrow{O}$$
 و $\overrightarrow{MA} = -\overrightarrow{MB}$ و $\overrightarrow{MA} = -\overrightarrow{MB}$ و $\overrightarrow{AM} = \overrightarrow{AM} = \overrightarrow{MB} = \frac{1}{2}\overrightarrow{AB}$: يعني أن $\overrightarrow{AM} = \overrightarrow{MB} = \frac{1}{2}\overrightarrow{AB}$) يعني أن $\overrightarrow{AM} = \overrightarrow{AB} = \overrightarrow{AB}$

* / مثال :



(9) – خاصیات :

عدد حقیقی غیر منعدم K عدد حقیقی غیر منعدم K $A \subset B$ عدد حقیقی غیر منعدم $A \subset A$ $A \subset A$ فإن النقط $A \subset A$ و $A \subset A$ فإن $A \subset A$ فإن $A \subset A$ فإن $A \subset A$ فإن $A \subset A$ في في خير منعيميتان .

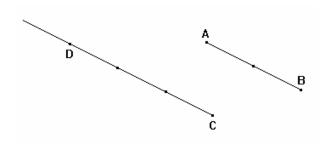
* / مثال :

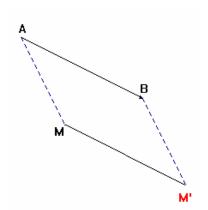
A و B و C ثلاث نقط غير مستقيمية.

.
$$\overrightarrow{CD} = -\frac{3}{2}\overrightarrow{AB}$$
 : لنشئ D لنشئ D لنشئ

(AB) // (CD) يعني أن
$$\overrightarrow{CD} = -\frac{3}{2}\overrightarrow{AB}$$

. و \overrightarrow{AB} و متجهتان مستقیمیتان منحاهما منعکسان





الإزاحة II _ الإزاحة : 1 _ مثال :

متجهة غير منعدمة و M نقطة .

. $\overrightarrow{AB} = \overrightarrow{MM}$: بحیث M' انتشئ النقطة M'

يعني أن ABM'M متوازي الأضلاع . $\overrightarrow{AB} = \overrightarrow{MM}'$

1) - تعریف:

متجهة غير منعدمة و M نقطة . \overline{AB} متجهة غير منعدمة و M نقطة . M' صورة M بالإزاحة ذات المتجهة (أو بالإزاحة التي تحول A إلى M' يعني أن : $\overline{AB} = \overline{MM}$ أي \overline{ABM} متوازي الأضلاع .

2) - خاصية أساسية

اذا کانت 'M' و 'N صورتي M و M على التوالي بإزاحة فإن : $\overline{MN} = \overline{MN} = \overline{MN}$.

3) - صور بعض الأشكال:

أ) -- صورة مستقيم:

صورة مستقيم بإزاحة هو مستقيم يوازيه

* / ملاحظة هامة :

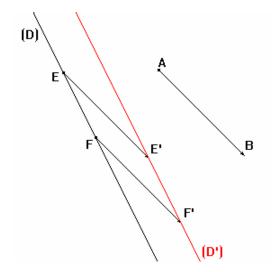
لإنشاء صورة مستقيم بإزاحة نحدد نقطتين مختلفتين على هذا المستقيم

ثم ننشئ صورتيهما بنفس الإزاحة .

* / مثال :

مستقیم (D) مستقیم متجهة غیر منعدمة و

. \overrightarrow{AB} طورة (D) بالإزاحة ذات المتجهة لنشئ (D') لننشئ

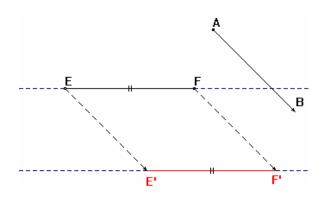


ب) -- صورة قطعة :

صورة قطعة [E'F'] بإزاحة هي القطعة [E'F'] بحيث : E' و 'F هما صورتي E' و E' على التوالي بنفس الإزاحة EF = E'F' و سيكون لدينا : EF = E'F'

* / مثال :

. متجهة غير منعدمة و \overline{AB} متجهة غير منعدمة و \overline{E} قطعة لننشئ القطعة \overline{E} \overline{E} صورة \overline{AB} بالإز احة ذات المتجهة \overline{AB} .

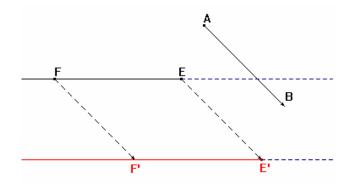


ج) -- صورة نصف مستقيم:

صورة نصف مستقيم (EF) بإزاحة هي نصف المستقيم (E'F) بحيث : E' و E' هما صورتي E' و E' على التوالي بنفس الإزاحة و سيكون لدينا : E'F' (EF) E'F'

* / مثال :

متجهة غير منعدمة (EF) نصف مستقيم . لننشئ نصف المستقيم (E'F') صورة (EF) بالإزاحة ذات المتجهة (EF) .

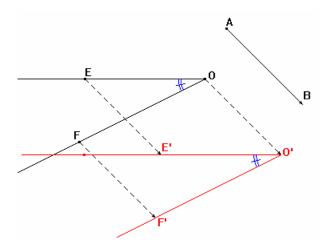


د) -- صورة زاوية :

صورة زاوية $A \, \hat{O} B$ بإزاحة هي الزاوية ' $B' \, \hat{O}' B$ بحيث : A و $O' \, \hat{O}' \, \hat$

* / مثال :

راوية . $\overrightarrow{A}\overrightarrow{B}$ متجهة غير منعدمة و $\overrightarrow{A}\overrightarrow{O}B$ زاوية . \overrightarrow{A} لننشئ الزاوية \overrightarrow{B} \overrightarrow{O} \overrightarrow{A} \overrightarrow{O} \overrightarrow{A} محورة \overrightarrow{A} \overrightarrow{O} \overrightarrow{O} بالإزاحة التي تحول \overrightarrow{A} إلى \overrightarrow{B} .



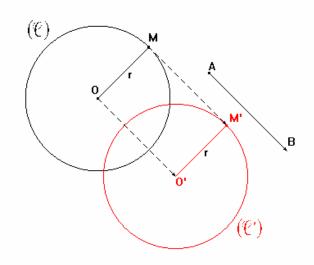
ه) -- صورة دائرة:

صورة دائرة (\mathcal{C}) مركزها O و شعاعها r هي الدائرة (\mathcal{C}') مركزها O صورة O بنفس الإزاحة و لها نفس الشعاع O .

* / مثال :

. r متجهة غير منعدمة و (\mathcal{C}) دائرة مركزها O و شعاعها \overline{AB}

لننشئ الدائرة (ℓ') صورة (ℓ') بالإزاحة التي تحول (ℓ') الى (ℓ')



لنبين أن للدائرتين نفس الشعاع r . G لدينا G صورة G بالإزاحة ذات المتجهة G . G صورة G بالإزاحة ذات المتجهة G . G

OM = O'M' : إذن

O'M' = r فإن OM = r و بما أن OM = r فإن الدائر تين نفس الشعاع r .

* / ملاحظة هامة :

لإنشاء صورة دائرة بإزاحة ننشئ صورة المركز بنفس الإزاحة ثم نحتفظ بنفس الشعاع.