
Database modeling with Merise

N.Benaouda

Email : nacbenenaouda@univ-setif.dz

nacbenaouda@gmail.com

mailto:nacbenenaouda@univ-setif.dz
mailto:nacbenenaouda@univ-setif.dz
mailto:nacbenenaouda@univ-setif.dz
mailto:nacbenaouda@gmail.com

Plan

• Introduction: Reminders

• Merise Method

 Historical view

Merise Principles

Data Dictionary

The conceptual schema

The logical schema

Reminders
Database

Structured set of coherent and lasting information,
corresponding here to the activities of an organization.

You have to model the data

• Analysis of information handled in the organization
with formal representation of their nature and
structuring.

Implement the data

Use of a database management system (DBMS), with
tools for data manipulation

Database Principles

• Data Modeling

• “Entity – Association” model

• “Relational” model

Data Modeling

• Data: Information corresponding to real elements.

examples: a customer, a product, a supplier, a lot, a sale.

• Entities: Inventories of real items. Each entity is defined
by a set of attributes.

example: the product entity is described with number,
name, type (vegetable or fruit), price.

• Format: The representation of each information. Basic
data types are used (text, number, etc.) example: the
name of a product is text.

• Association: Identification of dependencies between
entities. example: a sale applies to a single product and a
single customer, with an associated date and price.

Data Modeling Method

• The classic approach to an IT project includes the
following steps:

• Analysis of the existing situation and needs.

• Creation of a series of models that allow all important
aspects to be represented (Design).

• From the models, implementation of a database.

Data Modeling (continued)

• Once the analysis is completed, a series of models
must be developed, based on the analysis document.
These models will later allow us to implement a
database, which will contain all the information
necessary for the proper functioning of the
computerized system.

• The creation of these models is done according to a
certain method. We will base our course on the
MERISE method (Method of Computer Study and
Realization of Business Systems), which was
developed during the 1970s (1978) at the instigation
of the French Ministry of Industry.

Historical View of Merise Method(1)
• Merise is a methodology for information system development that was developed

in France during the 1970s and 1980s.

“Merise" is an acronym for "Méthode d'Etude et de Réalisation Informatique pour
les Systèmes d'Entreprise”, Or "Methodology for Information Systems
Development and Realization for Enterprises" in English.

1. Early 1970 : Initiation of Merise by a group of French computer scientists and
engineers.

2.The 1980s: Formalisation and documentation.

3.1983 : The first official version of the Merise.

4.Key Concepts: Merise introduced fundamental concepts, including data modeling
using the Entity-Relationship Diagram (ERD), process modeling using data flow
diagrams (DFD), and organizational modeling. The methodology emphasized the
importance of a structured and organized approach to software development.

Historical View of Merise Method(2)
5. Widespread Adoption (1980s-1990s)

Merise gained significant traction in France and French-speaking countries during the late
1980s and early 1990s. It became the dominant methodology for information system
development in these regions and was adopted by various organizations, both in the public
and private sectors.

6. Evolution and Adaptation (1990s-Present)

Over time, Merise has evolved to adapt to changing technologies and methodologies in the
software development field. It has incorporated object-oriented concepts and
methodologies, reflecting advancements in the industry.

7. Integration with UML (Unified Modeling Language)

With the rise of UML as a standard modeling language in the software engineering
community, efforts were made to integrate Merise concepts with UML. This integration
aimed to enhance the applicability and effectiveness of Merise in a broader context.

Historical View of Merise Method(3)
8. Continued Relevance (Present): While newer methodologies and
frameworks have emerged in the software engineering domain, Merise
remains influential, particularly in French-speaking regions. Its
foundational concepts and principles continue to be relevant and are
often integrated into modern software development practices.

It's important to note that while Merise has had a significant impact on
software development practices, particularly in French-speaking
regions, the field of software engineering has evolved considerably
since its inception, with newer methodologies and approaches gaining
widespread adoption and influence globally.

Data Modeling (continued)

• The Data Dictionary (DD)

It is a structure which brings together all the sections
called properties, constituting the different objects,
called entities of the future database.

We take stock of everything we want to put in the
database and present it in a table.

Data Dictionnary
• Description

Property wording(1) Property Name (2) Field type (3) Dimensions (4)

Customer number Cust_num Number #

customer name Cust_name Text 15

Data Dictionnary(continued)

• Property wording(1) or attribute, characterizing
information that is described in an unambiguous
manner.

• Property name(2) property name abbreviated,
unique name, without spaces and always respecting
the same abbreviations. (Codification)

• Field type(3) field content. It can be:
Text (which contains characters but there can also be

additional numbers)

Numerical (which will allow calculations)Date (or time)

Logical (or boolean) example: Yes/no, True/False

• Dimension (4) number of characters for text

The conceptual data model(CDM)

• The conceptual data model (CDM) aims to formally
write the data that will be used by the information
system and independently of the software used. It is
therefore an easily understandable representation of
data, allowing the information system to be described
using entities.

• The formalism used in this model is also known as the
“Entity-Relationship Schema”. This formalism is
based around 3 main concepts, entities, relationships
and properties.

The concept of entity

• An entity is a representation of a material or immaterial
element having a role in the system that we wish to describe.

• An entity makes it possible to model a set of concrete or
abstract objects of the same nature.

• Formalism: An entity is characterized by its name and its
properties. Represented by a rectangle, this rectangle is
separated into two fields.

 The top field contains the label.

The bat field contains the list of properties of the entity.

Name of the entity
Property1
Property2
…….

Client_3

003
Touati
Nihel
Constantine
25000
Locality3

Entity Examples

The Entity client

Occurrences of client

Client

Num_Client
Name
FirstName
Address
Postal_code
Locality

Client_2

002
Filali
Omar
Alger
16000
Locality2

Client_1

001
Benali
Ali
Sétif
19000
Locality1

The entity(continued)
• Occurrence of an object

An occurrence is an individualized element belonging to
the object. An entity can be:

A person or individual: STUDENT, CLIENT…

A concrete object: PRODUCT, TOOL, MACHINE...

An abstract object: ACCOUNT, TEACHING...

A place: DEPOSIT, WORKSHOP...

A documentary object: INVOICE, CONTRACT...

The Concept of Property

• A property is elementary data belonging to an object
(Entity) or a relationship.

• Formalism: The name of the property is indicated
inside the rectangle which represents the
corresponding entity.

• Here are some examples of properties: For a
Customer entity
Client-name

Client-Tel-No

Client-Address

• A property is unique in a CDM; and cannot be
attached to several different entities.

The term identifier

• An identifier is a set of properties (one or more) allowing one
and only one entity to be designated.

• The original definition is as follows:

The identifier is a special property of an object.

• Formalism: The property(ies) that constitute the identifier of
an entity are underlined.

• The choice of a correct identifier is very important for
modeling

ENTITY

The identifier
Properties

The notion of relationship (association)
• A relationship describes a link between two or more

entities. Each relationship has a noun, usually a verb. We
distinguish several types of relationships depending on the
number of participants:

• A recursive (or reflexive) relationship class relates the
same entity.

Example: The Marriage relationship connects two

elements of the PERSON entity.

• A binary relationship connects two entities.

Example: the relationship between the order and the

customer is a binary or 2-dimensional relationship.

• A ternary relationship class connects three entities.
Example: a car rental represents a relationship between
a vehicle, a person and a date.

• An n-ary relationship class connects n entities.

The notion of relationship (continued)

• Formalism: A relationship is represented by a hexagon
(sometimes an ellipse) whose title R describes the
type of relationship that connects the entities (usually
a verb).

E1

L’identifier-E1

E2

L’identifier-E2R

Relationship Examples
A product is stored in a deposit for a certain quantity: Qty-stock.

Product

Reference
Designation
Unit_price

Deposit

Deposit_code
Address

Stocker

Qty-Stock

Occurrence of a relationship

• Individualized relationship linking a single occurrence of
the objects participating in this relationship.

• For each occurrence of a relationship, the identifier
composed of the identifiers of the entities linked to the
relationship must be unique.

Cardinalities of a Relationship

• The cardinalities allowing to characterize the link which
exists between an entity and the relation to which it is
connected. The cardinality of a relation is composed of a
pair comprising a maximum limit and a minimum limit, an
interval in which the cardinality of an entity can take its
value:

The minimum bound (usually 0 or 1) describes the
minimum number of times an entity can participate in a
relationship.

The upper bound (usually 1 or N) describes the
maximum number of times an entity can participate in
the relationship.

Example1

Customer

Customer number
Name
First name
Address
Postal_code
Locality
Tel_number

Command

Command_No.
Date
QuantityOrder

1,n 1,1

Cardinalities (continued)

In the previous CDM,

• Between the Customer entity and the Order relationship,
we have the following cardinalities:
Minimum cardinality = 1, which means that each customer places

at least one order.

Maximum cardinality = n, which means that each customer can
place several (n) orders.

• Between the Command entity and the Order relation, we
find the following cardinalities:
Minimum cardinality = 1, so each order is placed by at least one

customer.

Maximum cardinality = 1, each order is placed by a maximum of
one customer.

(In other words : each order is placed by one and only one
customer.)

Cardinalities (continued)

• Example2: the Store binary relationship between two sets
of entities PRODUCT and DEPOSIT.

• Cardinality 1-1: if and only if a product can only be stored
in a single depot and a depot contains only one type of
product.

• 1-N cardinality: a product can be stored in several
repositories but where each repository contains only one
type of product, or vice versa.

• M-N Cardinality: A product type can be stored in multiple
repositories and a given repository can contain multiple
product types.

• “More generally, the cardinalities of an entity in an
association express the number of times that an occurrence
of this entity can be involved in an occurrence of the
association, at minimum and at maximum.”

Rules for Transformation from CDM to LDM

• Transforming entities

Any entity is transformed into a table. The entity's properties
become the table's attributes. The entity identifier becomes the
primary key of the table.

Entity Entreprise Table Entreprise

ENTREPRISE

NoENTREPRISE
Name
Address
PostalCode
Locality

ENTREPRISE

NoENTREPRISE
Name
Address
PostalCode
Locality

Transformation of binary relations of type1 (x,n) – (x,1)

Author
Author-No

Name

Book
Book-No.

Title
Write

1,n 1,1

Author
Author-No

Name

Book
Book-No.
Author-No

TitleWrite

Transformation of binary relations of type1
(x,n) – (x,1)

• In order to represent the relationship, we duplicate the

primary key of the table based on the entity with

cardinality (x,n) in the table based on the entity with

cardinality (x,1). This attribute is called a foreign key. The

two tables are linked by an arrow named according to the

relationship, which points from the foreign key table to the

table that contains the corresponding primary key.

Transformation of binary relations of type1 (x,n) – (x,1)

• The Author_Num attribute, which is the primary key
of the Author table, becomes a foreign key in the
Book table.

table.Book (Book_No, Title, #Author_Num)

means This is a foreign key.

And the Author entity maintains its properties
unchanged which become attributes.

Author(Author_No, Name)

Transformation of binary relations of type (x,1) – (x,1)
1er cas: 0,1- 1,1

Client
Client-No

Name
FirstName
Address
Postal_Code
Locality

Member-Card

Card-No.

Subscription-Type
Creation-date

dispose

0,1 1,1

Client
Client-No

Name
FirstName
Address
Postal-Code
Locality

Member-Card
Card-No.
Client-No

Subscription-Type
Creation-dateDispose

Entities

Tables

1st case: 0,1- 1,1(continued)

• Customer_No, which is the primary key of the Customer
table, becomes a foreign key in the Member_Card table.

• Member_Card(Card_No, Subscription_Type,

Creation_Date, #Client_No)

Transformation of binary relations of the type (x,1) – (x,1)
2nd case: 0,1- 0,1

Employee
Employee-No

Name
FirstName

Entreprise

Entreprise-No.

Entrep-Name
Head-Office-Adr

Technical
Director

0,1 0,1

Employee
Employee-No
Entreprise-No

Name
FirstName

Entreprise

Entreprise-No.

Entrep-Name
Head-Office-AdrTechnical Director

2nd case: 0.1- 0.1 (continued)

• We duplicate the key of one of the tables in the other.
When the relationship itself contains properties, these also
become attributes of the table in which the foreign key was
added.

• Either we migrate the primary key from the Entreprise
table into the Employee table, or we do the opposite.

Transformation of binary relations of the type
(x,n) – (x,n)

• We create an additional table having as primary key a key composed of the

primary keys of the 2 tables.

• When the relationship itself contains properties, these become attributes of

the additional table. A relationship property that is underlined must belong to

the compound primary key of the supplementary table.

(x,n) – (x,n) (Continued)

Command
Order-No

Date

Article

Article-No.

Article-Name
Unit-Price

Carry
Quantity0,1 0,n

Command
Order-No

Date

Article

Article-No.

Article-Name
Unit-Price

Carry

Article-No.

Order-No
Quantity

(x,n) – (x,n) (Continued)

• We create a Porter table, which contains as

primary key a key composed of No-Order and

Item_Code. It also contains the Quantity

property from the Porter relation.

Transformation of ternary relation ships

• We create an additional table having as primary key a key

composed of the primary keys of all the linked tables. This

rule applies independently of the different cardinalities.

When the relationship itself contains properties, these

become attributes of the additional table. A relationship

property that is underlined must belong to the compound

primary key of the supplementary table.

Transformation des relations ternaires

Teacher
Teacher-No

Name
First-Name
Borning-Date

Module

Module-No.

Module_name
Teaching

0,n 0,n

Classeroom
Classeroom-Name

Cycle

1,n

Transformation of ternary relationships
The Teaching table contains a key composed of Teacher-No,
Module-Name and Classroom-Name.

Teacher
Teacher-No

Name
First-Name
Borning-Date

Classeroom
Classeroom-Name

Cycle

Module

Module-No.

Module_name

Teaching
Teacher-No
Module-No.
Classeroom-Name

Terminology مصطلحات

• Data Dictionary قاموس البيانات

• CMD (Conceptual Data Model) نموذج البيانات المفاهيمي

• LDM (Logical Data Model) نموذج البيانات المنطقي

• Relationship علاقة

• Association رابطة

