PLAN DE TRAVAIL : GEOMETRIE DANS L'ESPACE

sources: cvcle3.orpheecole.com et Joan Riquet

Exercice 1

Donner le nom de chacun de ces solides.

Exercice 2

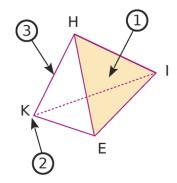
Complète.

a. La flèche 1 désigne

une face du solide.

Elle se nomme . IHE

b. La flèche (2) désigne


un sommet du solide.

Il se nomme .. K

c. La flèche (3) désigne une arête du solide.

Elle se nomme . [KH] .

CORRECTION

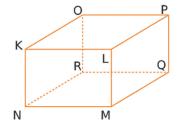

Exercice 3

a. Complète le tableau suivant.

Nature du solide	boule	prisme droit	pyramide	tétraèdre	cylindre	cône
Nombre de sommets		8	5	4		1
Nombre de faces		6	5	4		
Nombre d'arêtes		12	8	6		

- b. Colorie en rouge les bases des solides.
- c. Repasse en bleu leurs arêtes latérales.

Exercice 4


F a. Quelle est la nature et le nom de ce solide ? .C'est un cube et il se nomme ABCDHEFG.

b. Combien a-t-il de sommets ? Il a 8 sommets

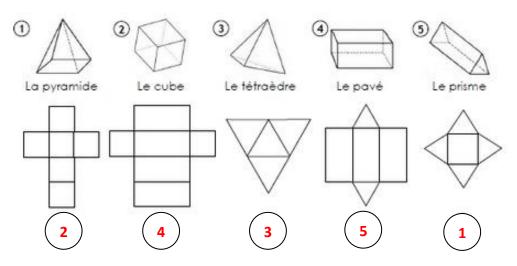
c. Quelle est la nature de ses faces ? Ses faces sont des carrés.

d. Nomme toutes ses faces. Ses faces sont : ABFE, DCGH, ABCD, EFGH, BFGC et AEHD.

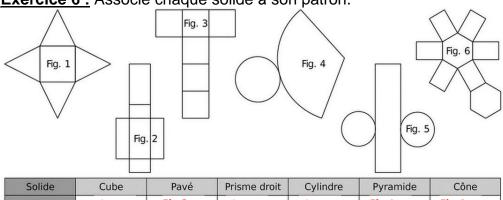
Ce solide est un pavé droit. a. Quel est le nom de ce solide ? C'est un pavé droit et il se nomme KLPORQMN.

b. Quelle est la nature de ses faces ? Ses faces sont des rectangles.

c. Quelles sont les faces identiques ? KOPL et NRQM - KLMN et OPQR -**KORN et PLMQ**

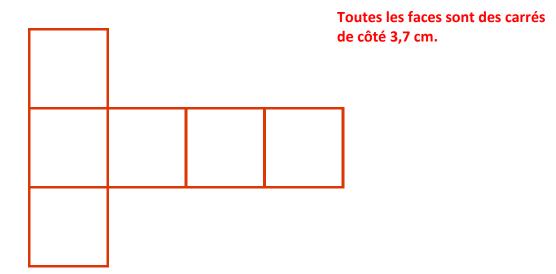

d. Que peut-on dire des arêtes [NR], [MQ], [LP] et [KO]?

Ces arêtes sont de même longueur et parallèles.


e. Nomme toutes ses autres arêtes.

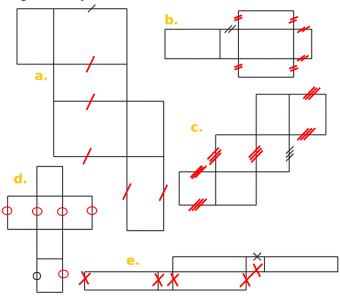
Les autres arêtes sont [KL], [OP], [QR], [MN], [KN], [LM], [QP] et[RO].

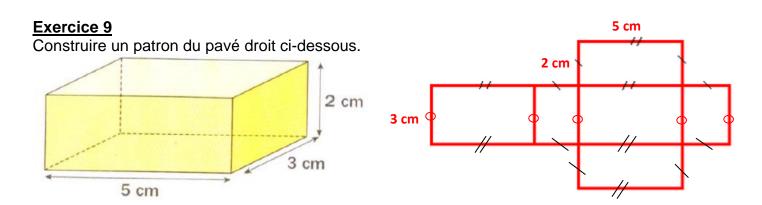
Exercice 5: Associe chaque solide à son patron.



Solide	Cube	Pavé	Prisme droit	Cylindre	Pyramide	Cône
Fig.	Fig 3	Fig 2	Fig 6	Fig 5	Fig 1	Fig 4

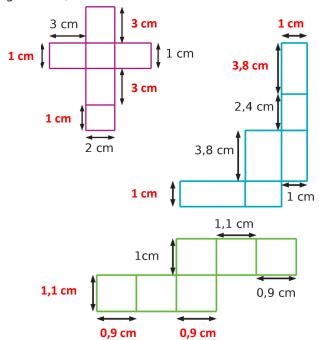
Exercice 7

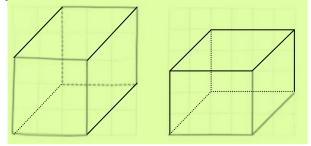

Construis un patron d'un cube d'arête 3,7 cm.


Attention : Le patron ci-dessous n'est pas représenté à l'échelle.

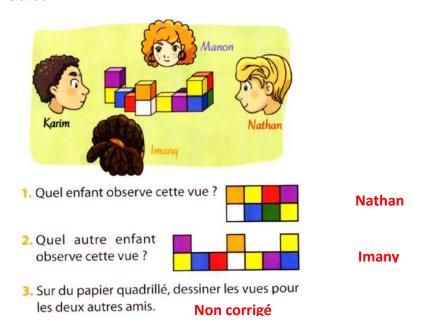
Exercice 8

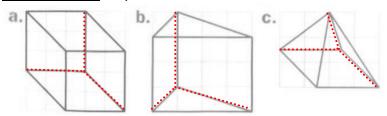
Dans chaque patron de pavé droit, code tous les segments qui ont la même longueur que le segment déjà codé.

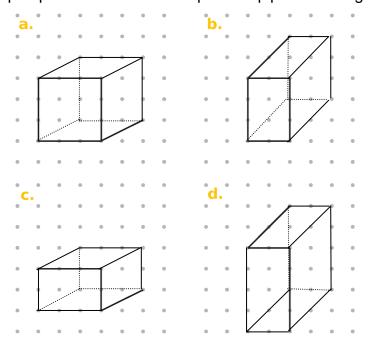


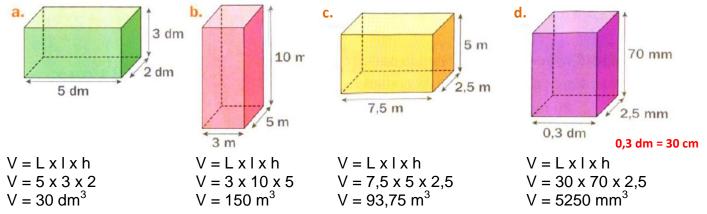

Attention : Le patron ci-dessus n'est pas représenté à l'échelle.

Exercice 10


Complète les longueurs manquantes au niveau des flèches (les figures ne sont pas en vraie grandeur).


Exercice 11: Compléter les représentations en perspectives cavalières des pavés droits ci-dessous


<u>Exercice 12</u>: Manon, Karim et Nathan ont réalisé cette construction avec leurs cubes et s'installent autour.


Exercice 13 : Reproduire les dessins suivants en mettant les pointillés les arêtes cachées.

<u>Exercice 14 :</u> Dans chaque cas, complète le dessin de façon à obtenir la représentation en perspective cavalière d'un parallélépipède rectangle.

Exercice 16 : Calculer le volume des pavés droits ci-dessous :

Exercice 18: Effectuer les conversions suivantes :

3 L = 300 cL0.7 hL = 70 L $950 \, daL = 95 \, hL$ 5,5 dL = 550 mL

Exercice 19 : Effectuer les conversions suivantes : $7m^3 = 7000 \text{ dm}^3$ $0,456 \text{ m}^3 = 456 \text{ dm}^3$ $8,7 \text{ dam}^3 = 8700 \text{ dam}^3$ $0,006 \text{ dam}^3 = 6 \text{ m}^3$ $1 \text{ mm}^3 = 0,001 \text{ cm}^3$ $6500 \text{ m}^3 = 6,5 \text{ dam}^3$

Exercice 20: Effectuer les conversions suivantes :

 $0.4 \text{ cm}^3 = 400 \text{ mm}^3$ $0.987 \text{ km}^3 = 987 \text{ hm}^3$ $4500 \text{ mm}^3 = 4.5 \text{ cm}^3$ $0,546 \text{ m}^3 = 546 \text{ dm}^3$ $456 \text{ m}^3 = 4560 \text{ hL}$ $50\ 000\ dL = 5\ m^3$ $0.6 L = 600 000 mm^3$ 0,0585 dam³=585hL