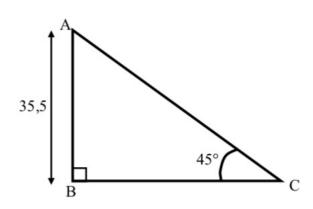


Sujet DNB pro découpé en entrainements (2)

Des aides proposées et la correction

Entraînements mathématiques Cycle 4

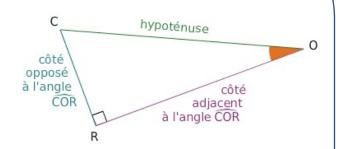


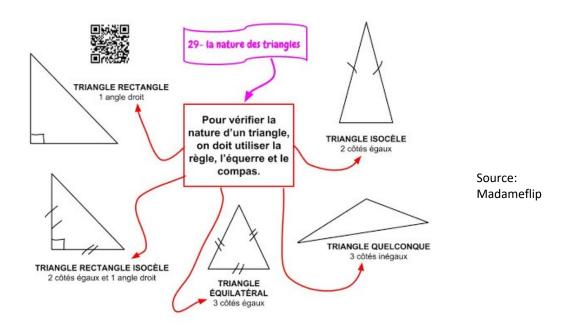
Entrainement 7: cycle 4

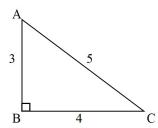
On donne le schéma ci-contre.

Le schéma n'est pas à l'échelle.

- 1. Donner la valeur de l'angle \widehat{BAC} .
- 2. Expliquer pourquoi BC = 35,5.
- Calculer la longueur AC. Arrondir au dixième.


Aides

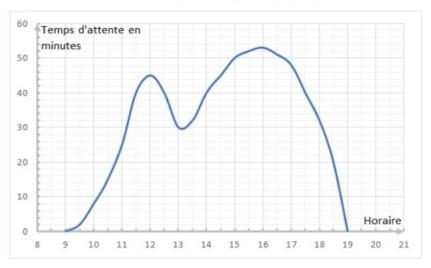

Le triangle COR est rectangle en R.


Sin
$$\widehat{COR} = \frac{\widehat{cote} \ \mathbf{O} \ ppose \ \widehat{a} \ \widehat{COR}}{\mathbf{H} \ ypotenuse} = \frac{RC}{CO}$$

$$\mathbf{Cos} \ \widehat{\mathsf{COR}} = \frac{\widehat{\mathsf{cote}} \ \mathbf{A} \ \mathsf{djacent} \ \widehat{\mathsf{a}} \ \widehat{\mathsf{COR}}}{\mathbf{H} \mathsf{ypotenuse}} = \frac{\mathsf{RO}}{\mathsf{CO}}$$

Tan
$$\widehat{COR} = \frac{\widehat{cote} \ \mathbf{Oppose} \ \widehat{a} \ \widehat{COR}}{\widehat{cote} \ \mathbf{A} \ djacent \ \widehat{a} \ \widehat{COR}} = \frac{RC}{RO}$$

Théorème de Pythagore:


Dans un triangle ABC rectangle en B, le carré de la mesure de l'hypoténuse est égal à la somme des carrés des mesures des deux autres cotés.

$$AC^2 = AB^2 + BC^2$$

	1.	$\widehat{BAC} = 180 - 90 - 45 = 45^{\circ}$	
EX 2	2.	Parce que le triangle ABC est un triangle rectangle isocèle. AB = BC	
	3.	$AC = \frac{35,5}{\sin{(45^\circ)}} \approx 50,2$	

Entrainement 8 : cycle 4

La direction d'un parc de loisirs a mené une enquête sur le temps d'attente moyen pour une attraction. Le résultat est représenté par le graphique ci-dessous :

- 1. Donner l'heure à laquelle le temps d'attente est maximum.
- 2. Donner le temps d'attente à 11h30.
- 3. La direction affiche « faible temps d'attente » si celui-ci est inférieur à 20 minutes, et « fort temps d'attente » si celui-ci est supérieur à 50 minutes.
 - 3.1 Rédiger une phrase donnant la ou les plages horaires correspondant à un « faible temps d'attente ».
 - 3.2 Rédiger une phrase donnant la ou les plages horaires correspondant à un « fort temps d'attente ».

Aides

Tu devrais y arriver sans aide

	1.	16h00
	2.	40 min
EX 3	3.1.	De 9h à 10h45 et de 18h30 à 19h
	3.2.	De 15h à 16h45

Entrainement 9: cycle 4

Dans un parc d'attraction aquatique, la descente de rivière se fait à l'aide de bouées géantes. Les bouées disponibles sont de trois couleurs : 8 jaunes, 12 rouges et 10 bleues. Elles sont distribuées au hasard par le maître-nageur.

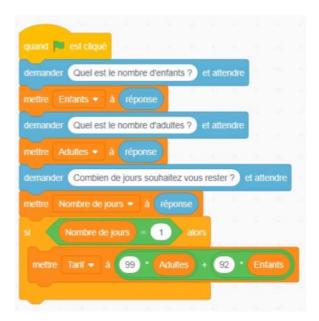
- Un enfant arrive le premier à l'ouverture de l'attraction. Toutes les bouées sont disponibles.
- Calculer la probabilité qu'on lui donne une bouée rouge. Donner le résultat sous la forme d'une fraction irréductible.
- Un peu plus tard dans la journée, il souhaite refaire cette attraction. Sur la rivière, il y a déjà 3 bouées jaunes, 3 rouges et 2 bleues. Toutes les bouées qui ne sont pas sur la rivière sont disponibles.

Calculer la probabilité que le maître-nageur lui donne une bouée rouge. Donner le résultat sous la forme d'un nombre décimal arrondi à 0,01.

Aides

- 1) Fraction: nb bouées rouges / nb total de bouées Réduis ensuite le plus possible ta fraction
- 2) Calcule le nb de bouées qui restent hors de l'eau Nb total de bouées qui restent hors de l'eau Fraction= nb bouées rouge / nb total

	1.	12/30 2/5	
EX 4	2.	9/22 ou 0.40 ou 0.41 0.41	

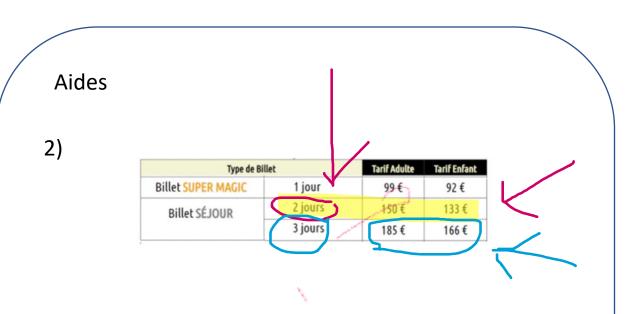

Entrainement 10 : cycle 4

Les tarifs des billets d'entrée dans un parc d'attraction sont les suivants :

Type de Bill	Tarif Adulte	Tarif Enfant	
Billet SUPER MAGIC	1 jour	99 €	92 €
Billet SÉJOUR	2 jours	150 €	133 €
J. II. C.	3 jours	185 €	166€

Des bornes d'achat automatiques ont été installées à l'entrée du parc. Elles sont programmées pour :

- demander aux clients le nombre de jours qu'ils souhaitent passer dans le parc ;
- Le début du script de ce programme est représenté ci-dessous. Que permet-il de calculer?


La suite du script est donnée en ANNEXE cases du script laissées blanches.

- Compléter les 3
- 3. Quel montant affichera ce programme pour une famille composée de 2 adultes et de 3 enfants désirant passer 2 jours dans le parc ?

Aides

1) Il permet de calculer le d'..... d'..... d'..... d'..... en fonction du nombre d'..... et d'..... et de la

3) Prix adulte x nb adultes + prix enfant x nb enfants

Attention: regarder la bonne ligne qui correspond au nb de jours voulus

	1.	Ce programme permet de calculer le tarif d'entrée dans le parc en fonction du nombre d'enfants et d'adultes et de la durée.
EX 5	2.	2 ; 185 ; 166
	3.	2*150+3*133=699 €

Entrainement 11 : cycle 4

Parmi les réponses proposées, cocher la réponse exacte.

1.	Soit la fonction	f définie par f	f(x) = -7x + 10:		
	$\Box f(-2) = 22$	$\Box f$ (-2) = -22	$\Box f$ (-2) =	24 □ f(-2) = - 24	1
2.	Dans un triangle			NB est l'hypoténuse	□ NDB = 90°
3.	La solution de l'é	quation 7 x - 1	2 = 4x + 12 es	t:	
	$\Box x = 0$	x = 5	= x = 8	□ <i>x</i> = - 4	
4.	Une droite a pour	réquation y=	5 x + 2:		
	☐ 2 est le coeffic	ient directeur	□ 5 est le coef	ficient directeur	
	□ x est le coeffic	cient directeur	$\Box y$ est le coe	fficient directeur	
5.	Voici les salaires	mensuels des	salariés d'une r	nini-entreprise. Indique	r le salaire médian
	□ 1 369	□ 2 427	□ 174	9 🗆 1 456	□ 1628

Aides

- 1) Remplace x par (-2) Calcule
- 2) Fais le croquis du triangle pour mieux « voir » et trouver ainsi la réponse
- Résolution d'une équation du 1er degré à une inconnue

 4(3x 20) = 2x + 10 + x

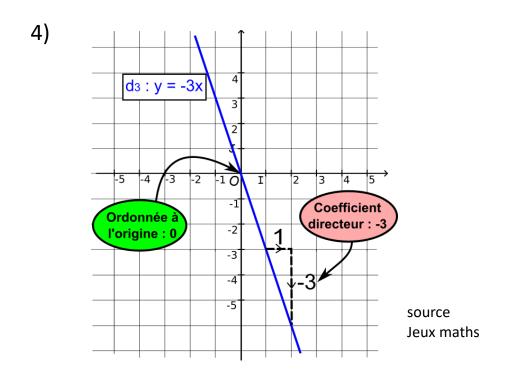
 12x 80 = 3x + 10

 12x 80 = 3x + 10 + 80

 12x = 3x + 90

 12x 3x = 3x + 90

 12x 3x = 3x + 90 3x


 9x

 Les étapes

 1) effectue le calcul littéral

 2a) regroupe les constantes dans un seul membre (+80)

 2b) regroupe les inconnues dans l'autre membre (-3x)

	2	
	1.	f(-2)=24 réponse 3
	2.	DN est l'hypoténuse réponse 2
EX 1	3.	x=8 réponse 3
	4.	5 est le coefficient directeur réponse 2
	5.	Me =1628 réponse 5