Généralités sur les fonctions

I) Notion de fonction et ensemble de définition :

<u>Définition1</u>: Soit E une partie de IR et f une relation de E dans IR. Lorsque tout élèment x de E à au plus une image par f (à 0 ou 1 image par f) on dit que f une fonction de E vers IR on note. $f: E \rightarrow IR$

 $x \mapsto f(x)$

<u>Définition2</u>: L'ensemble Df des réel x tel que f(x) existe est appelé ensemble de définition de la fonction f ou domaine de définition on dira alors f est définie sur Df

Activité 3page 9 : Déterminer le domaine de définition Df de la fonction f de chacun des sas

: $f(x) = x^2 + x - 4$, $f(x) = \frac{1}{x^2 - x}$, $f(x) = \frac{x}{|x| - 2}$, $f(x) = \frac{x + 1}{\sqrt{x + 1} - 1}$

* $f(x) = \frac{3x}{2x-1}$; $f(x) = \sqrt{3x-1}$; $f(x) = \frac{1}{x^2+3}$; $f(x) = \frac{1}{\sqrt{x}-2}$

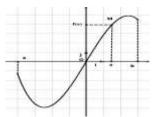
II) Représentation graphique d'une fonction:

Définition:

- * Le plan est muni d'un repère R(o,i,j). Soit f est une fonction définie sur $E(E \subset IR)$. On appelle représentation graphique de f, ou courbe représentative de f, l'ensemble des points M de coordonnées (x,f(x)), ou $x \in E$
- * Si \mathcal{C}_f désigne la courbe représentative d'une fonction f, alors $\mathcal{C}_f = \{M(x, f(x)) \text{ avec } x \text{ un èlément de } E\}$
- On dit que y=f(x) est l'équation de la courbe $\mathscr{C}_{\mathbf{f}}$

Example: f est une fonction définie sur $E = [a \ b]$

M(x,y) appartient à \mathscr{C}_f) équivaut à $\begin{cases} x \in E \\ y = f(x) \end{cases}$

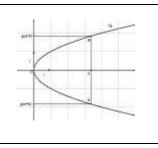


Remarque

(%). Cette courbe ne représente pas une fonction car le réel a possède plus qu'une image par g.

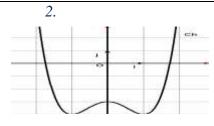
$$\begin{cases} g(a) = b_1 \\ g(a) = b_2 \end{cases} et \ b_1 \neq b_2 \ donc \ (Cg) \ ne$$

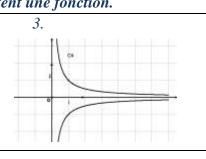
représente pas une fonction



 $\underline{Activit\'e~1}$: Parmi les courbes ci-dessous, indiquer celle qui représentent une fonction.

I.





<u>Activité 2</u>: soit la fonction definie sur IR par $f(x) = -\frac{1}{2}x^2 - x + 1$

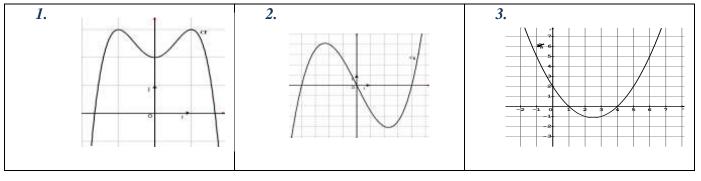
- 1. Montrer qu'il existe 3 réels a, α et β tel que $f(x) = a(x-\alpha)^2 + \beta$
- 2. Représenter la fonction f dans un repère orthonormé $\mathbf{R}(o, i, j)$.

III) Fonctions: parité

<u> </u>		
Définition	Interprétation graphique	Conséquence
Soit f une fonction définie sur Df et (G) sa courbe représentative dans un repère $\mathcal{R}(o, i, j)$. \Rightarrow On dit que f est paire si, pour tout réel x de Df $\begin{cases} -x \in Df \\ f(-x) = f(x) \end{cases}$ $\Rightarrow f(x) = -x^4 + 2x^2 + 2f \text{ est définie sur IR}$ $\begin{cases} x \in IR \text{ et } -x \in IR \\ f(-x) = -(-x)^4 + 2(-x)^2 + 2 = f(x) \end{cases}$ Donc f est une fonction paire	F = x = F 100	* Une fonction est paire si et seulement si sa courbe représentative est symétrique par rapport à l'axe des ordonnées
* On dit que f est impaire si, pour tout réel x de D $f \begin{cases} -x \in Df \\ f(-x) \neq -f(x) \end{cases}$ * $f(x) = \frac{8}{3}x - \frac{1}{6}x^3 f$ est définie sur IR $\begin{cases} x \in IR \text{ et } -x \in IR \\ f(-x) = \frac{8}{3}(-x) - \frac{1}{3}(-x)^3 \\ = -\frac{8}{3}x + \frac{1}{3}x^3 = -f(x) \end{cases}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	* Une fonction est impaire si et seulement si sa courbe représentative est symétrique par rapport à l'origine du repère

Activité \hat{I} : Déterminer le domaine de définition de chacune des fonctions suivantes puis dire si la fonction est paire, impaire ou ni paire ni impaire.

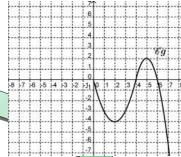
<u>Activité</u> 2: Le plan est muni d'un repère orthogonale R (o, \vec{i}, \vec{j}) . Les courbes C_1 , C_2 , et C_3 représentent respectivement trois fonctions f, g, et h. A l'aide des graphiques déterminer la parité de f, g et h (si elle est paire, impaire ou ni paire ni impaire)

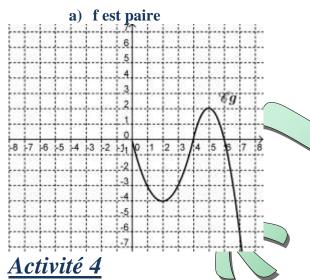


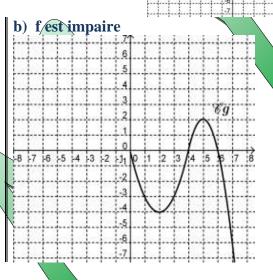
Donc f est une fonction impaire

Activité 3:On donne la restriction sur l'intervalle [0, 6] de la courbe représentative d'une fonction f.

- 1) Lire sur cette courbe: f(0), f(1), f(2), f(4), f(5), f(6) et f(7).
- 2) Compléter la courbe de f dans les deux cas suivants :







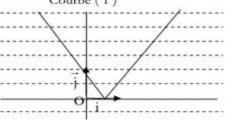
1/ Choisir la réponse exacte.

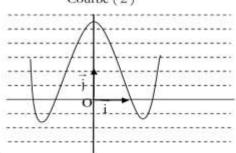
- a) La fonction f définie sur $[-1,+\infty[$ par $f(x) = \frac{3x}{1+|x|}$
 - * est paire
- * est impaire
- * n'est ni paire ni impaire
- b) Le plan est muni d'un repère orthogonal (O, \vec{i}, \vec{j}) .

Une des courbes suivantes ne représente ni une fonction paire ni une fonction impaire. Laquelle ?

Courbe (1)

Courbe (2)





- c/ L'ensemble de définition de la fonction $x \mapsto \sqrt{|4-2x|}$ est :
 - *]-∞,2]
- *[2,+∞[
- *IR

Sens de variations d'une Fonction:

Définition

Soit f une fonction définie sur un intervalle I de IR.

On dit que:

- f est croissante sur I si et seulement si pour tous réels a et b de I, si a < b alors f(a) ≤ f(b)
- f est décroissante sur I si et seulement si pour tous réels a et b de I, si a < b alors f(a) ≥ f(b)
- f est strictement croissante sur I si et seulement si pour tous réels a et b de I, si a < b alors f(a) < f(b)
- f est strictement décroissante sur I si et seulement si pour tous réels a et b de I, si a < b alors f(a) > f(b)

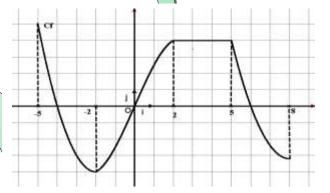
Remarques:

❖ Une fonction est dite monotone sur un intervalle I, si elle est croissante ou décroissante sur I.

Activité 1 :

La courbe ci-contre représente une fonction f définie sur l'intervalle [-5,8].

Indiquer par lecture graphique le sens de variation de f sur cet intervalle.



IV) Extremums d'une Fonction:

Définition

Soit f une fonction définie sur une partie D de IR et x₀ un réel de D.

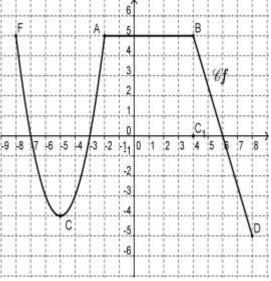
- Lorsque $f(x_0)$ est la plus grande valeur de f sur D, on dit que f admet un maximum absolu en x_0 . c'est-à-dire pour tout réel x de D, $f(x) \le f(x_0)$.
- Lorsque $f(x_0)$ est la plus petite valeur de f sur D, on dit que f admet un minimum absolu en x_0 , c'est-à-dire pour tout réel x de D, $f(x) \ge f(x_0)$.
- on dit que f admet un maximum local (ou relatif) en x₀ s'il existe un intervalle ouvert I inclus dans D où f(x₀) est la plus grande valeur de f sur I.
- on dit que f admet un minimum local (ou relatif) en x₀ s'il existe un intervalle ouvert I inclus dans D où f(x₀) est la plus petite valeur de f sur I.

Remarques:

* Lorsque f admet un maximum ou un minimum en a on dit que f admet un extremum en a .

Activité 1: Ci –dessous (Sf) la courbe représentative d'une fonction f définies sur [-8,8].

Pour chacune des questions suivantes. Compléter par Vrai ou Faux (aucune justification n'est demandée)



	Faux	Vrai
a) -4 est l'image de – 5 par f.		
b) f est une fonction impaire.		
c) f est strictement décroissante sur l'intervalle [-2, 8].		
d) f est constante sur l'intervalle [- 2 , 4].		
e) -5est le minimum absolue de f sur l'intervalle [-8,8].		
f) Les solutions de l'équation $f(x) = 0 : S_{[-8,8]} = \{-7,6\}.$		
g) f est croissante sur l'intervalle [-5, 4].		
h) Les solutions de l'inéquation $f(x) \ge 0$:		
$S_{[-8,8]} = [-8,7] \cup [-3,6].$		

