BA	00	40
RΛ	 .,,,,	11.3
-	 	

SÉRIES: MTE-TSEco-STG

Exercice 1 (4 points)

Soient A et B deux évènements de l'univers Ω tels que : P(A) = 0.07 ; P(B/A) = 0.87 et $P(\overline{B}/\overline{A}) = 0.98$

1°/a°/ Calculer P(A\cap B), P(\overline{A}), puis P($\overline{A} \cap \overline{B}$).

 \mathbf{b}° / Vérifier que $P(B/A) + P(\overline{B}/A) = 1$ et calculer $P(\overline{B}/A)$, puis $P(A \cap \overline{B})$.

2°/ a°/ Vérifier que $\overline{B} = (A \cap \overline{B}) \cup (\overline{A} \cap \overline{B})$ et que $(A \cap \overline{B}) \cap (\overline{A} \cap \overline{B}) = \emptyset$. b°/ Calculer $P(\overline{B})$ et P(B).

Exercice 2 (4 points)

1°/ Résoudre dans IR l'équation
$$\frac{x+8}{x+2} = \frac{x+2}{x-3}$$

- 2° / Déterminer le réel a sachant que les nombres a-3, a+2 et a+8 sont trois nombres consécutifs d'une suite géométrique dont on déterminera la raison.
- 3° / Calculer la somme des dix termes consécutifs commençant par a-3 (On pourra utiliser la calculatrice).

Problème (12 points)

Partie A-/

Soit la fonction numérique f définie sur [0; 10] par $f(x) = \ln(2x + 4)$.

- 1° / Calculer f'(x) et déterminer son signe sur [0; 10]. Établir le tableau de variation de f.
- 2°/ Recopier et compléter le tableau suivant à l'aide de valeurs décimales arrondies à 0,1près par excès.

x	0	1	2	4	6	8	10
f(x)							

 3° / Dans le plan rapporté à un repère orthonormal (unité : 1 cm), dessiner avec soin la représentation graphique de f.

TSVP 🕶 🛄

Partie B-/

On note (\mathcal{T}), la courbe représentative de la fonction f étudiée dans la partie \mathbf{A} -/ et (\mathcal{D}) la droite d'équation : $y = \frac{1}{2}x$.

1°/ Dans le plan utilisé à la partie A-/, tracer la droite (\mathcal{D}) . On appelle A et B les points d'intersection entre (\mathcal{T}) et (\mathcal{D}) , A désignant celui d'abscisse positive.

2°/ On se propose de déterminer un encadrement de l'abscisse a de A. Pour cela, on définit sur l'intervalle I = [0; 10] la fonction h par : $h(x) = \frac{1}{2}x - \ln(2x + 4)$.

 \mathbf{a}° / Étudier sur I le sens de variation de h et dresser le tableau de variation correspondant.

 \mathbf{b}° / Soit \mathbf{a} la solution dans I de l'équation h(x) = 0. Reproduire puis compléter le tableau suivant afin d'en déduire un encadrement de \mathbf{a} , d'amplitude 0,1.

x	5,2	5,3	5,4	5,5
h(x)				

Partie C

Une usine fabrique mensuellement x produits $(0 \le x \le 10)$. Chaque mois, les frais de production sont donnés par $f(x) = \ln(2x+4)$; la recette obtenue en vendant x produits, au prix unitaire de 50 000 FCFA, s'exprime par $g(x) = \frac{1}{2}x$ (frais et recette en centaines de milliers de FCFA). Le bénéfice mensuel de l'usine est donc :

$$B(x) = \frac{1}{2}x - \ln(2x + 4).$$

 1° / L'usine réalise-t-elle un bénéfice lorsqu'elle vend chaque mois :

a°/4 produits?

b°/7 produits?

2°/ Quel nombre minimal de produits faut-il vendre mensuellement pour être bénéficiaire ?