Striking out on one's own

Idiosyncratic frequency as a measure of derivation vs inflection

Maria Copot, Timothee Mickus & Olivier Bonami

Outline

Background

The theoretical difference between inflection and derivation

Empirical manifestation: the case of frequency

Methodology

Statistical inference

Frequency

Word vectors

Experiments

Model structure

The data

The numbers

Annex

Outline

Background

- The theoretical difference between inflection and derivation
- Empirical manifestation: the case of frequency

Methodology

- Statistical inference
- Frequency
- Word vectors

Experiments

- Model structure
- The data
- The numbers

Annex

- Derivation increasingly recognised as **paradigmatic**, in a parallel way to inflection
 - See among many others: Marle (1984), Becker (1993), Bochner (1993), Blevins (2001), Stump (2005), Stekauer (2014), Boyé and Schalchli (2016), and Bonami and Strnadová (2019)
- A movement towards a **unified, gradient approach** based on empirical evidence.

• While not a dichotomy, inflection and derivation remain two distinct concepts in theory

Inflection	Derivation
lire~lisait	lire~lisible
Outputs realisations of a single lexeme	Outputs independent lexical entries
Same concept	Different concepts

• Can this theoretical difference manifest itself empirically?

- **Derivational output is inherently more independent from its base**. More variability for members of derivational relationships.
- For example, meaning relationships are more predictable in inflection than derivation (Bonami and Paperno, 2018)

- For related reasons, we can expect a **difference in the predictability of word frequency** for inflection and derivation.
- Because **derived lexemes are independent lexical entities**, we expect their frequency to vary independently of their base

Verb	Action noun	Freq. ratio
ouvrer 'to work' cambrioler 'to rob'	ouvrage 'work; book' cambriolaae 'robbery'	0.02 0.34
m	edian	17
arriver 'to arrive'	arrivage 'delivery'	489
<i>fixer</i> 'to fasten'	fixage 'fixing'	1927

• In inflection, we do not expect such variability, except where it is semantically motivated (e.g. *eye* is more likely to be found in the plural than *nose*)

- Is the frequency of the output more predictable for inflection, compared to derivation?
 - Gradient vs dichotomy?
 - What factors are most helpful?

Outline

Background

The theoretical difference between inflection and derivation

Empirical manifestation: the case of frequency

Methodology

Statistical inference

Frequency

Word vectors

Experiments

Model structure

The data

The numbers

Annex

The methodological plan

How does a given morphological process impact frequency?

- We can train a statistical model for each morphological process to predict the frequency of the output
- We can use goodness of fit measures to compare our different models, and highlight whether some processes are harder to model than others
 - The residual standard error (RSE) of a model quantifies the accuracy of the prediction (low RSE = good prediction)

• ...But what predictors should be used?

- We can use the **frequency of a related form** for a **rough estimate** of how frequently the lexeme is used
 - We'll use the reference form (verb inf. & noun sg.)

reference form = citation form (of the base)

To compute frequencies, we need a large corpus:

- FrCOW 16: 6B tokens, in French, crawled from the web.
- We use the tokenization provided in the XML files.

from Baroni, Bernardi, and Zamparelli (2014)

- We can use many different observations, e.g., on words or lexemes
- Frequency is encoded in the length (norm) of a vector

Semantic neighbourhood

· We expect the neighbours of a given word to share semantic characteristics with it

- word vectors reflect lexical semantics
- Regions of the semantic space describe coherent semantic fields (e.g., weather verb vectors are bunched together).

We can use vectors to make semantically informed predictions.

- We can use them directly: plug in the vector w of the word w (Word-level semantic information)
- We can use them indirectly: explore the neighbourhood of w which describe the general trend for semantically similar words (Lexeme-level semantic information)

We'll train two 100D vector spaces on FrCOW16 data.

We want to use vectors as predictors in statistical models

"With four parameters I can fit an elephant, and with five I can make him wiggle his trunk."

John von Neumann

- If we use all 100 vector components, we would have more predictors than distinct responses.
- We can apply **dimensionality reduction** to solve this issue.

Click here for an amazing GIF that we couldn't be bothered to embed properly!

Outline

Background

- The theoretical difference between inflection and derivation
- Empirical manifestation: the case of frequency

Methodology

- Statistical inference
- Frequency
- Word vectors

Experiments

- Model structure
- The data
- The numbers

Annex

• A baseline: *f*(*output*) ~ *f*(reference form)

- A baseline: *f*(*output*) ~ *f*(reference form)
 - f(lirai) ~ f(lire)

- A baseline: *f*(*output*) ~ *f*(reference form)
- $f(output) \sim f(reference form) + reference form$

- A baseline: *f*(*output*) ~ *f*(reference form)
- $f(output) \sim f(reference form) + reference form$
 - f(lirai) ~ f(lire) + LIRE
 - why? A way to take base semantics into account
 - Necessary to account for eye~eyes, nose~noses

- A baseline: *f*(*output*) ~ *f*(reference form)
- $f(output) \sim f(reference form) + reference form$
- *f*(*output*) ~ *f*(reference form) + average neighbour relative frequency

- A baseline: *f*(*output*) ~ *f*(reference form)
- $f(output) \sim f(reference form) + reference form$
- *f*(*output*) ~ *f*(reference form) + average neighbour relative frequency
 - average neighbour relative frequency = $\frac{1}{n} \cdot \sum_{i=1}^{n} \frac{neighb \, form_i}{neighb \, ref \, form_i}$
 - $f(lirai) \sim f(lire) + avg(\frac{f(intérpreterai)}{f(intérpreter)} + \frac{f(déchiffrerai)}{f(déchiffrer)} + ...)$
 - why? For processes whose output is heavily dependent on the base, this should provide an accuracy boost.

- A baseline: *f*(*output*) ~ *f*(reference form)
- $f(output) \sim f(reference form) + reference form$
- *f*(*output*) ~ *f*(reference form) + average neighbour relative frequency
- $f(output) \sim f(reference form) + average neighbour$

- A baseline: *f*(*output*) ~ *f*(reference form)
- $f(output) \sim f(reference form) + reference form$
- *f*(*output*) ~ *f*(reference form) + average neighbour relative frequency
- $f(output) \sim f(reference form) + average neighbour$
 - f(lirai) ~ f(lire) + avg(intérpreterai + déchiffrerai + ...)
 - Neighbours of the base are obtained. The vector of their output is averaged and added as a predictor.
 - why? Same reason for model type 3, but semantics is included more directly.

- What morphological processes did we look at?
- Derivation¹:
 - * $\mathsf{V}\to\mathsf{ACTION}$ Noun
 - V \rightarrow AGENT NOUN
- Inflection²
 - Noun pluralisation
 - 18 verbal inflectional cells (excluded cells with high intraparadigmatic homophony, as frequency counts are unreliable)

¹Datasets of derivational pairs are scarce, so we were not able to include more. Derivational pairs were selected from Demonette (Hathout and Namer, 2014) ²Inflectional pairs were based on the GLàFF (Sajous, Hathout, and Calderone, 2014)

Crunching the numbers

- Theoretically, the distinction between inflection and derivation is quite clear:
 - Inflection: different ways to talk about the same concept depending on context
 - Derivation: different concepts
- Prediction: qualities of derivational output are harder to predict from the base, compared to inflection. This is borne out: all of inflection has a lower RSE than all of derivation.
- The method employed shows promise for better understanding the nature of different processes.
 - For past participles, the output has inherently varied semantics, which is why models based on frequency rather than vectors are better predictors

Outline

Background

- The theoretical difference between inflection and derivation
- Empirical manifestation: the case of frequency

Methodology

- Statistical inference
- Frequency
- Word vectors

Experiments

- Model structure
- The data
- The numbers

Annex

Data selection

- Which cells in the paradigm of French verbs can we work with?
- Working with our dataset, we exclude...

Finite forms									
		1sg	2s0	i :	3sg	1PL	2	PL	3pl
IND.PRS		2	1.3	3	183	2		5	14
IND.	PFV	0	(0 5083 10			10	5076	
IND.	PST	4484	4448	3 46	594	5116	51	16	5101
FUT		5211	5207	7 52	213	5190	52	12	5221
SBIV.PRS		0	250)	2	8		7	13
SBJV.IPFV		4701	4725	5 53	119	4726	47	38	4740
CON	COND		() 52	220	5212	52	12	5215
IMP		-	()	-	2		2	-
Nonfinite forms									
	INF DRS		PTCP		PST.PTCP				
		11(0.11(0)		M.SG	F.S	G M	.PL	F.PL	_
	5006	4311 3		3935	30	55 29	903	3199	

Number of verbs from Flexique with no homograph documented in the GLÀFF, by paradigm cell

Data selection

- Which cells in the paradigm of French verbs can we work with?
- Working with our dataset, we exclude...
 - cells with high numbers of homographs according to the GLÀFF;

Finite forms									
		1SG	2s	G	3sg	1PL	. 2pl	-	3pl
IND.	PRS	2		3	183	2	: 5	j	14
IND.	IPFV	0		0 5	083	10	10) 5	5076
IND.	PST	4484	444	8 4	694	5116	5116	5 5	5101
FUT		5211	520	7 5	213	5190	5212		5221
SBJV	.PRS	0	25	0	2	8	7	'	13
SBJV	.IPFV	4701	472	5 5	119	4726	4738	3 4	4740
CON	D	0		0 5	220	5212	5212		5215
IMP		-		0	-	2	2	2	-
Nonfinite forms									
	INF	DDC	PST.PTCP						
	int' Pi		-ICF	M.SG	F.5	5G <i>N</i>	1.PL F.	ΡL	
	5006		11	1 3935		55 29	903 31	199	

Number of verbs from Flexique with no homograph documented in the GLÀFF, by paradigm cell

Data selection

- Which cells in the paradigm of French verbs can we work with?
- Working with our dataset, we exclude...
 - cells with high numbers of homographs according to the GLÀFF;
 - cells out of current usage (i.e. most attestations are likely to be archaic);

Finite forms									
	1SG		2sg	3sg	1PL	2pl	3pl		
IND.	PRS	2	3	183	2	5	14		
IND.	IPFV	0	0	5083	10	10	5076		
IND.	PST	4484	4448	4694	5116	5116	5101		
FUT		5211	5207	5213	5190	5212	5221		
SBJV	.PRS	0	250	2	8	7	13		
SBJV	.IPFV	4701	4725	5119	4726	4738	4740		
CON	OND 0		0	5220	5212	5212	5215		
IMP	IMP		0	-	2	2	-		
Nonfinite forms									
	INF	DDC I	DTCD	PST.PTCP					
	INF	FK3.r	N	1.SG F	.SG M	.PL F.PI			
	5006		11 3	935 3	055 29	03 319	9		

Number of verbs from Flexique with no homograph documented in the GLÀFF, by paradigm cell

• In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - know-knows, dance-dances:

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - know-knows, dance-dances: knowing the meaning of the former entails knowing the meaning of the latter

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - know-knows, dance-dances: knowing the meaning of the former entails knowing the meaning of the latter
 - sell-seller, but dine-diner or see-seer:

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - know-knows, dance-dances: knowing the meaning of the former entails knowing the meaning of the latter
 - sell-seller, but dine-diner or see-seer: knowing the meaning of the former does not entail knowing the meaning of the latter

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - know-knows, dance-dances: knowing the meaning of the former entails knowing the meaning of the latter
 - sell-seller, but dine-diner or see-seer: knowing the meaning of the former does not entail knowing the meaning of the latter
- Bonami and Paperno (2018) test whether this assumption is consistent with distributional semantics

- In morphology, inflection has been claimed to be more semantically regular than derivation (Stump, 1998; Stekauer, 2014, e.g.)
 - know-knows, dance-dances: knowing the meaning of the former entails knowing the meaning of the latter
 - sell-seller, but dine-diner or see-seer: knowing the meaning of the former does not entail knowing the meaning of the latter
- Bonami and Paperno (2018) test whether this assumption is consistent with distributional semantics
- Assuming it is, we would expect linear offsets for inflectional relations (e.g., bare 3rd sg) to be more consistent than those for derivational relations (e.g., verb – agent)

Bonami and Paperno (2018), II

• Many factors to control: frequency, but also the inherent semantics of the words under consideration

Bonami and Paperno (2018), II

- Many factors to control: frequency, but also the inherent semantics of the words under consideration
- The solution of Bonami and Paperno (2018) is to use word triples

Bonami and Paperno (2018), II

- Many factors to control: frequency, but also the inherent semantics of the words under consideration
- The solution of Bonami and Paperno (2018) is to use word triples

• They find that derivational relations yield significantly more variation than inflectional ones: derivational pairs stray more from the average value than inflectional pairs.