Valeurs approchées - Arrondí - Ecríture scientífique

I) Valeurs approchées:

1) Valeur approchée:

Soit p entier relatif ($p \in \mathbb{Z}$), on dit que le <u>nombre décimal a</u> est une valeur approchée d'un <u>nombre réel x</u> à 10^p près si on a $a-10^p \le x \le a+10^p$.

Exemple:

- * Une valeur approchée de $\sqrt{2} = 1,414213562$ à 10^{-3} près est : 1,414 c'est à dire on conserve les chiffres de l'écriture décimal jusqu'au rang indiqué, on s'arrête à 3 chiffres après la virgule le nombre obtenu est la valeur approchée de $\sqrt{2}$ à 10^{-3} près .
- * Une valeur approchée de $\sqrt{3} = 1,732050808$ à 10^{-5} près est : 1,73205 (Car $1,73205 10^{-5} \le \sqrt{3} = 1,732050808 \le 1,73205 + 10^{-5}$)
 - 2) Valeur approchée par défaut:

Soit p entier relatif ($p \in \mathbb{Z}$), on dit que le <u>nombre décimal b</u> est une valeur approchée d'un <u>nombre réel x</u> par défaut à $\mathbf{10}^p$ près si on a $\mathbf{b} \leq x < \mathbf{b} + \mathbf{10}^p$.

Exemple:

- * Une valeur approchée de $\sqrt{3} = 1,732050808$ par défaut à 10^{-3} près est : 1,732 (Car $1,732 \le \sqrt{3} = 1,732050808 < 1,732 + 10^{-3}$)
- 3) Valeur approchée par excès:

Soit p entier relatif ($p \in \mathbb{Z}$), on dit que le <u>nombre décimal d</u> est une valeur approchée d'un <u>nombre réel x</u> par excès à $\mathbf{10}^p$ près si on a $d - \mathbf{10}^p < x \le d$.

Exemple:

- * Une valeur approchée de $\sqrt{2} = 1,414213562$ par excès à 10^{-3} près est : 1 ,415 c'est à dire on conserve les chiffres de l'écriture décimal jusqu'au rang indiqué et en ajoute 1 ou dernière chiffre conservé .
 - * Une valeur approchée de $\sqrt{3} = 1,732050808$ par excès à 10^{-5} près est : 1,73206

$$(Car 1,73206 - 10^{-5} < \sqrt{3} = 1,732050808 \le 1,73206)$$

<u>Activité</u>: Donner la valeur approchée, la valeur approchée par défaut et. la valeur approchée par excès de 3843,8253 au centaine prés, à 10^{-1} prés, à 10^{-2} prés et à 10^{-3} prés,

	au centaine prés	à l'unité prés	à 10 ⁻¹ prés	à 10 ⁻² prés	à 10 ⁻³ prés
la valeur approchée					
la valeur approchée par défaut					
La valeur approché par excès					

II) Arrondi:

Pour trouver l'arrondi d'un nombre réel à un rang donné, on conserve les chiffres de l'écriture décimal jusqu'au rang indiqué.

- ❖ Si le chiffre d'après est 0, 1, 2, 3 ou 4 c'est-à-dire inférieur ou égale à 4 alors l'arrondi est le nombre obtenu
- ❖ Si le chiffre d'après est 5, 6, 7, 8 ou 9 c'est-à-dire supérieur ou égale à 5 alors on ajoute 1 au dernière chiffre conservé.

Exemples:

- * l'arrondi 10^{-4} prés de $\frac{526}{111} = 4,738738...$ est 4,7387 car le $5^{ième}$ chiffre après la virgule est 3.
- * l'arrondi au centième de $\frac{526}{111} = 4,738...$ est 4,74 car le $3^{ième}$ chiffre après la virgule est 8.
- l'arrondi au millier de 67534 est 68000 car le chiffre qui représente les centaines (le suivant du chiffre qui représente les millier) est 5.

Activité:

Donner l'arrondi de 3843,8253 au millier prés, au centaine prés, à l unité prés, à 10^{-2} prés, à 10^{-3} prés,

	au millier prés	au centaine prés	à l unité prés	à 10 ⁻² prés	à 10 ⁻³ prés
l'arrondi					

III) Ecriture scientifique et ordre de grandeur :

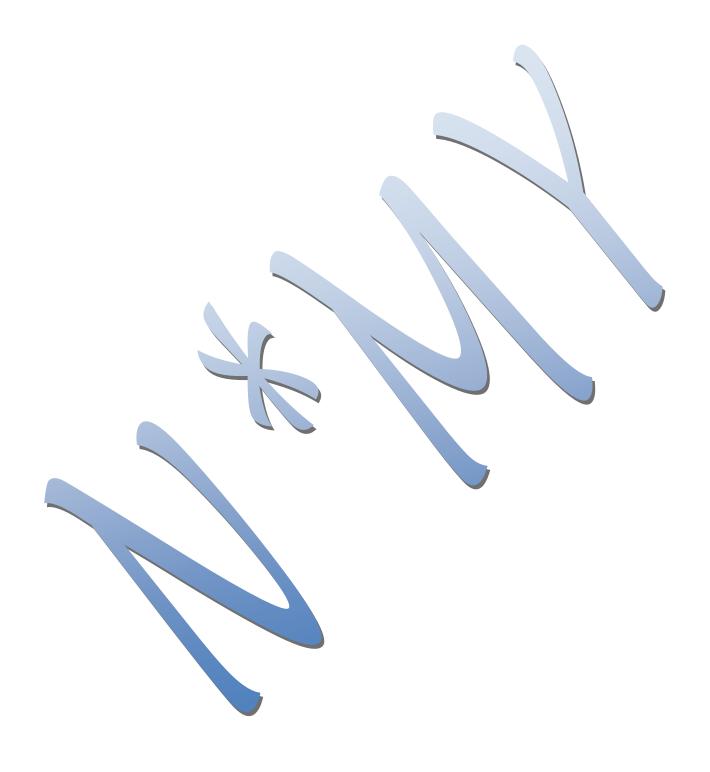
1) <u>Ecriture scientifique</u>

:Soit x un nombrer décimal ($x \in ID$). Toute écriture de la forme $x = a \times 10^n$ avec n est un entier relatif ($n \in \square$) et a est un nombre décimal ayant un seul chiffre non nul avant la virgule s'appelle notation ou écriture scientifique du nombre décimal x.

Exemples:

- * L'écriture scientifique de 0,00834 est : $8,34 \times 10^{-3}$.
- \star L'écriture scientifique de 9321 ,65 est : 9,321 65 $\times 10^3$.
- 2) Ordre de grandeur:

Si $x = a \times 10^n$ est l'écriture scientifique du nombre décimal x alors l'ordre de grandeur de x est $b \times 10^n$ ou b est l'arrondi de a à l'unité prés.


Exemples:

- * L'écriture scientifique de 0,000657 est : 6.57×10^{-4} . Donc l'ordre de grandeur de 0,000657 est 7×10^{-4} car le $1^{ière}$ chiffre après la virgule de 6.57 est 5.
- * L'écriture scientifique de 939546, 23 est 9.3954623×10^5 donc l'ordre de grandeur de 939546, 23 est 9.3954623×10^5 car le $1^{ière}$ chiffre après la virgule de 9.3954623 est 3.

Activité :

Recopier et compléter le tableau suivant :

Nombres	0,000698	657,897	2011	0,00265	356129
Ecriture scientifique					
Ordre de grandeur					

