Relations dans l'espace.

Paul Milan

Professeurs des écoles le 29 septembre 2009

Table des matières

	Le plan		
	1.1	Définition	2
2	Positions relatives éléments de l'espace		
	2.1	Relation entre deux droites	2
	2.2	Relation entre une droite et un plan	3
	2.3	Relations entre deux plans	2

1 Le plan

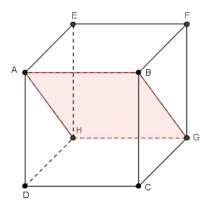
1.1 Définition

Définition 1 Un plan est défini par :

- 1) Trois points non alignés A, B, C. Ce plan est alors noté (ABC).
- 2) Deux droites sécantes (D_1) et (D_2) . Ce plan (P) est alors engendré par ces deux droites.

Au lieu de désigner un plan par trois points, on désigne parfois ce plan par une face d'un polyedre.

Exemple : Dans le cube *ABCDEFGH*. On définit alors le plan (*ABG*)



2 Positions relatives éléments de l'espace

2.1 Relation entre deux droites

Définition 2 Deux droites contenues dans un même plan sont dites coplanaires

Exemple : Dans le cube ci-dessus les droites (AB) et (EF) sont coplanaires. Par contre (AB) et (FG) ne sont pas coplanaires.

Dans l'espace, deux droites peuvent être :

- 1) **Confondues** : $si d_1 = d_2$
- 2) **Sécantes** : si d_1 et d_2 ont un point commun. Deux droites sécantes sont nécessairement coplanaires.
- 3) **Parallèles** : si d_1 et d_2 sont coplanaires et non sécantes.

Transitivité : si $d_1//d_2$ et si $d_2//d_3$ alors $d_1//d_3$.

Sur notre cube, on peut dire que : (AD)//(BC) et (BC)//(FG) car les faces ABCD et BCGF sont des carrés, donc (AD)//(FG)

- 4) **Perpendiculaires** : si les droites d_1 et d_2 sont sécantes à angle droit.
- 5) **Orthogonales**: d_1 est orthogonale à d_2 s'il existe une droite d'_1 parallèle à d_1 qui est perpendiculaire à d_2 .

dans notre cube : (AB) est orthogonale à (FG), car (EF)//(AB) et (EF) est perpendiculaire à (FG).

6) Quelconques.

2.2 Relation entre une droite et un plan

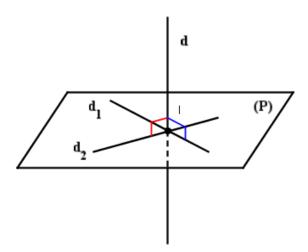
Un droite peut être :

- 1) Contenue dans un plan : (BC) est contenue dans le plan (BFG)
- 2) **Sécante à un plan** : si la droite *d* coupe le plan (*P*) en un point.
- 3) **Orthogonale à un plan** : si la droite d, sécante en I au plan (P), est perpendiculaires à toutes droites de (P) passant par I. (AD) est orthogonale à (DCG).

Dans notre cube

4) **Parallèle à un plan** : si la droite d et le plan (P) n'ont aucun point commun. Dans notre cube : (AB) est parallèle à (EFG).

Théorème 1 Une droite d est orthogonale a P en I si et seulement si deux droites de P passant par I sont perpendiculaires a d.



2.3 Relations entre deux plans

Deux plans peuvent être :

- 1) Sécants : si les deux plans se coupent en une droite
- 2) Perpendiculaires : Un plan est perpendiculaire à un autre, s'il contient une droite perpendiculaire au second plan.
- 3) Parallèles : si les deux plans n'ont aucun points commun.

Remarques:

Il faut se méfier de la notion de plans perpendiculaires. Par exemple :

- → Deux plans perpendiculaires peuvent contenir des droites parallèles.
- ◆ Deux plans perpendiculaires à un troisième ne sont pas forcément parallèles (voir les faces du cube *ABCD*, *ABFE* et *BCGF*).
- → Deux plan orthogonaux à une même droite sont parallèles entre eux

Par contre:

- Si deux plans sont perpendiculaires, un plan parallèle à l'un est perpendiculaire à l'autre
- Si deux plans sont parallèles, un plan perpendiculaire à l'un est perpendiculaire à l'autre.