

<mark>Chapitre M1</mark>

Statistique et probabilités 3

STATISTIQUE A UNE VARIABLE 2/2

Capacités	Connaissances
•Interpréter des indicateurs de tendance centrale et de dispersion, calculés à l'aide des TIC, pour différentes séries statistiques quantitatives	 Indicateurs de tendance centrale : mode, classe modale, moyenne, médiane. Indicateurs de dispersion : étendue, écart type, écart interquartile Q₃ – Q₁ Diagramme en boîte à moustaches

Contenu du dossier :

Cours M1

Exercices (livre chapitre 1 pages 9 à 20)

Corrigé des exos

Evaluation EM1

Corrigé de l'évaluation EM1

I. Vocabulaire

Indicateurs de tendance centrale : Moyenne et médiane.

• Moyenne :

•Médiane

Nombre *Me* qui découpe la liste des valeurs du caractère, rangées en ordre croissant, en deux listes d'effectifs égaux .

Indicateurs de dispersion : Quartiles et étendue.

•1er et 3e quartiles

Nombres Q_1 et Q_3 qui découpent chacun la liste des valeurs du caractère, rangées en ordre croissant, en deux listes selon la répartition suivante :

•Étendue

Différence entre la plus grande et la plus petite des valeurs du caractère.

Activité 1

Le tableau statistique suivant indique la durée individuelle (en heures) passée devant un écran (télévision, ordinateur, console de jeux vidéo, ...) un samedi pour 250 lycéens.

Pour répondre aux deux questions suivantes, utilisez la calculatrice.

a) Reliez chaque indicateur de tendance centrale à sa valeur.

Moyenne \bar{x} • • 2,4

Médiane $Me \bullet 2,5$

b) Reliez chaque indicateur de dispersion à sa valeur.

$1^{\rm er}$ quartile Q_1 ,	•	•	3
3^{em} quartile Q_3	•	•	4,5

Étendue • 1,5

Durée (en heures)	Nombre de lycéens
xi	ni
0,5	4
1	35
1,5	42
2	38
2,5	36
3	40
3,5	30
4	12
4,5	8
5	5
Total	250

25 %

75 %

75 %

Q3 25 %

Garçons

Fille

	36	40					
En début d'année, on a relevé dans	12	55					
un collège les poids des élèves.	Fremmer quartile Q_1	42					
Certains indicateurs (en kg) sont	Médiane <i>Me</i>	47	61				
portés dans le tableau ci-contre:	Moyenne	48	65				
a) Complétez le tableau par	Troisième quartile Q_3	54	71				
le calcul des deux étendues.	Maximum	69	82				
	Entendue						
b) Pour les garçons, reliez							
chaque phrase à l'indicateu	ır qui lui correspond.						
Environ 25 % ont un poids inférieur	ou égal à 55 kg •	• Médi	ane				
Environ 50 % ont un poids inférieur ou égal à 61 kg • • Moyenne							
Environ 75 % ont un poids inférieur	ou égal à 71 kg •	• Prem	ier Quartile				
Le poids moyen est égal à 65 kg	•	• Troisi	ième Quartile				
c) Pour les filles, complétez ch	acune des phrases						
• Le poids minimal est kg et l	e poids maximal est	<u>kg</u> .					
• Environ 25 % ont un poids inférieu	r ou égal àkg.						
• Environ 50 % ont un poids inféri	eur ou égal à kg.						
• Environ 75 % ont un poids inféri	eur ou égal à kg.						
• Le poids moyen est égal à	_kg.						
d) Rayez les encadrés inexacts. L'étendue est plus petite / grande pour les filles que pour les garçons.							

Cela traduit une moins / plus grande dispersion des poids pour les filles que pour les garçons.

e) On a représenté, pour les poids des filles, le minimum, le premier quartile, la médiane, le troisième quartile et le maximum sur la droite graduée suivante.

Filles :

 Min
 Q1
 Me
 Q3
 Max

 30
 32
 34
 36
 38
 40
 42
 44
 46
 48
 50
 52
 54
 56
 58
 60
 62
 64
 66
 68
 70
 72
 74
 76
 78
 80
 82

Complétez, sur le même modèle, la droite graduée pour les poids des garçons.

Garçons

30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 60 62 64 66 68 70 72 74 76 78 80 82

Activité 2

II. Mode ou classe modale

II.1. Déterminer le (ou les) mode(s) d'une série statistique Le mode de cette série est la valeur du caractère qui a le plus grand des effectifs Exemple

Le tableau suivant donne les volumes de téléchargement du mois dernier, exprimés en giga-octets, de 27 élèves de première d'un lycée :

Volumes, en Go	1	2	3	4	5	6	7	8	Total
Effectif	1	0	2	2	4	9	5	4	27

<mark>Activité 3</mark>

1. Cochez la case correspondant à la bonne réponse.

a) L'effectif le plus grand est :	□4	$\Box 5$	□9

b) Il y a donc un seul mode, qui est : $\Box 6$ $\Box 7$		8
--	--	---

2. Cela signifie que le volume de téléchargement le plus fréquent de ces élèves est :

□ 6 Go □7 Go □8 Go

3. Cette série statistique peut être illustrée par un diagramme en bâtons.

a) Complétez le graphique.

a) Rayez les encadrés inexacts.

Pour déterminer graphiquement le mode de cette série, on repère le bâton dont la hauteur est la plus petite / grande, puis on lit la valeur correspondante sur l'axe des abscisses / ordonnées.

c) Entourez, sur l'axe des abscisses du graphique, la valeur correspondant au mode de cette série.

PBP	Chapitre M1: (SP3)	Page 5/10

II.2. Déterminer la (ou les) classe(s) modale(s) d'une série statistique

La classe modale de cette série est la classe de valeurs du caractère qui a le plus grand des effectifs.

Exemple:

Le tableau suivant donne les volumes de téléchargement du mois dernier, exprimés en giga-octets, des 200 élèves du lycée :

Volumes, en Go	[0;2[[2;4[[4;6[[6;8]	Total
Effectif	5	35	90	70	200

<mark>Activité 4</mark>

1. Cochez la case correspondant à la bonne réponse.

a) L'effectif le plus grand est :	□ 70	90	□ 2	:00
b) Il y a donc une seule classe mod	lale, qui est : 🛛 [4 ; 6[[6;8]	[0;8]	

2. Cela signifie que la classe des volumes de téléchargement les plus fréquents de ces élèves est :

 $\Box \quad [4;6[\qquad \qquad \Box \quad [6;8] \quad \Box \quad [0;8]$

3. Cette série statistique peut être illustrée par un histogramme.

a) Complétez le graphique.

b) Rayez les encadrés inexacts.

Pour déterminer graphiquement la classe modale de cette série, on repère le rectangle dont la hauteur est la plus petite / grande, puis on lit la valeur / la classe correspondante sur l'axe des abscisses / ordonnées.

III. Moyenne et écart type

III.1. Évaluer la dispersion d'une série avec l'écart type

L'écart type d'une série statistique, noté σ , indique la dispersion des valeurs de la série autour de leur moyenne : un grand écart type correspond à une grande dispersion ; un petit écart type correspond à une petite dispersion.

Voici le relevé des trois notes de mathématiques de Théa, Hector et Basile au cours du premier trimestre.

Théa	11	09	10	$\bar{x} =$	<i>σ</i> ≈ 0,8
Hector	07	15	08	$\overline{x} = $	<i>σ</i> ≈ 3,6
Basile	1	03	16	$\overline{x} =$	$\sigma \approx 5,4$

Activité 5

1. Calculez la note moyenne de chacun des élèves et complétez le tableau.

2. Cochez la case correspondant à la réponse exacte.

a) Les moyennes des notes des trois élèves sont égales.
Vrai
Faux

b) L'écart type des notes de Théa est le plus petit, c'est donc elle dont la dispersion des notes est la

50

45 40

35

30 25 20

15

10 5 0

82

84

80

□ Faux

44

86 | 90 | 94 | 88 92 96

98

102

104

100

plus petite.
Vrai
Faux
c) La dispersion des notes de Hector est plus grande que celle des notes de Basile.

🗌 Vrai

III.2. Aborder la courbe de Gauss

Un laboratoire d'analyses biologiques étudie les de calcium (en mg/L) de 220 personnes. Les résultats sont représentés par un histogramme, lequel la courbe tracée visualise l'allure de la série. Cette courbe, en forme de cloche, est appelée courbe de Gauss.

• les valeurs sont réparties à peu près symétriquement autour de leur moyenne ;

taux

sur

106

PBP				С	hapitr	e M1:	(SP3)		Page 7/10
Activité 6									
Les movenne et écart ty	vne de	e la s	érie	des ta	ux de	calci	um e	n mg	/L. sont :
$\bar{x} \approx 93$ et $\sigma \approx 4.5$.	P						, .		
1.Calculez. $\bar{x} - 2\sigma \approx$							•	$\overline{x} + 2$	$\sigma \approx$.
2. Cochez la case corresp	onda	nt à 1	la réi	oonse	exact	e.			
a) Sur le graphique, on c	consta	ate q	ue le	e nom	bre d	e per	sonne	s don	t le taux, en mg/L, est compris
entre 84 et 102 est :	Γ] 1	60				208		
b) Le laboratoire indique sujets. La réponse à la c	que] questi	les v on a	aleu) est	rs sont -elle c	com ohére	prises nte av	s entre vec ce	e 84 n ette af	ng/L et 102 mg/L pour 95% des firmation ?
🗆 Oui 🗆 Non									(Justifiez avec un calcul.)
III.3. Comment détern	niner	, à la	a cal	culatr	rice, l	a mo	yenne	e et l'	écart type d'une série
statistique ?							-		
Méthode 1									
<u>e 1:</u>									
• <u>Modèle Casio</u> : MENU	\rightarrow S	ГАТ	$\rightarrow F$	EXE –	<i>→ Ent</i>	rer le	s vale	eurs x _i	du caractère dans la liste 1,
puis les effectifs dans la l	iste 2				n alaa		ntuan	100.00	entros dos alassos commo
(SI les valeurs du caractel valeurs x.)	re sor	n reş	grouj	pees ei	ii cias	ses, e	entrer	les ce	intres des classes comme
• \rightarrow CALC -> SET. choisi	r List	1 su	r la l	igne 1	Var X	XList	et Lis	st2 sui	r la ligne 1Var Freq (ou 1 sur la
ligne 1Var Freq si tous le	s effe	ectifs	son	$t 1) \rightarrow$	EXI	Г.			
<u>pe</u> 2: Lire les données mo	yenn	e et e	écart	type i	noté x	cσn s	ur Ca	sio:	
• Modèle Casio: CALC -	→ 1V	AR e	et ch	ercher	sur l	écran	ı la m	oyenn	he \overline{x} et l' écart type noté σx .
Frampla									
Voici le relevé des notes	de fra	ançai	is de	25 élè	eves d	l'une	classe	e:	
Note, xi	5	8	9	10	11	12	13	15	
Nombre d'élèves, <i>ni</i>	1	3	5	6	5	3	1	1	
 Déterminez, à la calcula	trice	. la 1	nove	enne r	· et l'	 écart	tvne	σ de	cette série.
	_	, Iu I	noy	chine a		ccui t	type	0 uc	
Etapes 1 et 2: On obtient	x =			6	etσ	≈			
III 1 Commont dótorn	ninor	cur	• tah	lour l	o mo	vonn	o ot l'	ócart	typo d'uno sório statistiquo ?
	IIIICI	, sui	lav	icui , i		yeiiii		Clart	type a une serie statistique :
<mark>Méthode 2</mark>									
Étape 1: Ouvrir une feui	lle de	calc	ul –	→ Entr	er les	valeı	ırs <i>xi</i>	dans 1	les colonnes successives \rightarrow
Dans chaque colonne, uti	liser	la po	igné	e de re	empli	ssage	pour	répét	er la valeur le nombre de fois
égal à son effectif. (Si les	vale	urs d	lu ca	ractère	e sont	regro	oupée	s en c	lasses, entrer les centres des

Chapitre M1: (SP3)

classes comme valeurs xi.)

Étape 2: Entrer dans une cellule la formule et dans une autre la formule , en sélectionnant les valeurs.

PBP

'BP	Chapitre M1: (SP3)	Page 8/10

Voici les prix (en €) des menus du déjeuner proposés par 15 brasseries :

Prix, xi	10	15	18	20	25
Nombre de brasseries, <i>ni</i>	4	7	1	2	1

Déterminez, à l'aide du tableur, la moyenne x et l'écart type σ de cette série. Solution

Étape 1 Les valeurs correspondent à la plage A1:E7.

Étape 2 On entre la formule <u>MOYENNE(A1:E7)</u> dans la cellule A9. On obtient $\bar{x} =$

On entre la formule=ECARTYPEP(A1:E7)	dans la	cellule B9. On	
obtient $\sigma \approx$			

0	A	B	С	D	E
1	10	15	18	20	25
2	10	15		20	
3	10	15			
4	10	15			
5		15			
6		15			
7		15			

IV. Médiane et écart interquartile

IV.1. Évaluer la dispersion d'une série avec l'écart interquartile

Une infirmière scolaire a relevé le nombre moyen d'heures de sommeil quotidien de chaque fille et chaque garçon d'un lycée. Certains résultats (en heures), pour les garçons, sont portés dans le tableau suivant.

	Minimum	$1^{ m er}$ quartile Q_1	Médiane	3^{eme} quartile Q_3	Maximum
Garçons	6 h 15	7 h 15	8 h 15	8 h 30	9 h 15
Filles					

L'écart interquartile d'une série statistique est le nombre $Q_3 - Q_1$. Il indique la dispersion des valeurs de la série autour de leur médiane : un grand écart interquartile correspond à une grande dispersion ; un petit écart interquartile correspond à une petite dispersion.

<mark>Activité 7</mark>

Cochez la case correspondant à la bonne réponse.

1.L'écart interquartile de la série associée aux garçons est : 1 h 15 3 h 00

2. Le pourcentage de garçons qui ont un nombre moyen d'heures de sommeil quotidien compris entre 7 h 15 et 8 h 30 est environ 50 %. Vrai Faux

<mark>Activité 8</mark>

1. Complétez le tableau de l'encadré du paragraphe 1, en lisant sur le diagramme correspondant aux filles la médiane, les 1er et 3e quartiles, les valeurs minimale et maximale.

2. Complétez.

Pour la série associée aux filles, on lit sur le 2e diagramme que l'écart interquartile est égal à ______ et que l'étendue est égale à ______.

3. Rayez les encadrés inexacts.

En regardant la longueur de chacune des deux boîtes, on constate que l'écart interquartile est plus petit / grand pour les filles que pour les garçons donc que la dispersion de la série est plus petite / grand pour les filles que pour les garçons.

IV.3. Comment tracer un ou plusieurs diagrammes en boîte à la calculatrice?

On a relevé la taille des garçons et des filles d'un âge donné et rapporté les données dans les tableaux suivants:

Taille G	Effectif
145	1
148	2
150	1
155	3
159	12
161	10
165	3
175	12
178	5
180	2
185	1
198	1

Taille F	Effectif
131	1
132	1
138	2
139	1
141	12
145	5
146	2
148	10
149	3
150	1
152	1
155	2

Méthode 3

Tracer **un** diagramme en boîte

<u>Etape</u>1:

 Modèle Casio : MENU → STAT → EXE → Entrer les valeurs taille G du caractère dans la liste 1, puis les effectifs dans la liste 2. (Si les valeurs du caractère sont regroupées en classes, entrer les centres des classes comme valeurs x_i.)

• \rightarrow GRAPH -> SET -> GRAPH TYPE -> \triangleright ,->Box choisir List l sur la ligne XList et List2 sur la ligne Freq (ou 1 sur la ligne 1Var Freq si tous les effectifs sont 1) \rightarrow EXIT-> GPH1.

<u>Tracer **deux** diagrammes en boîte</u>

<u>Etape</u>2:

 Modèle Casio : MENU → STAT → EXE → Entrer les valeurs taille F du caractère dans la liste 3, puis les effectifs dans la liste 4. (Si les valeurs du caractère sont regroupées en classes, entrer les centres des classes comme valeurs x_i.)

• \rightarrow GRAPH -> SET -> GPH2 -> GRAPH TYPE -> \triangleright ,->Box choisir List 3 sur la ligne XList et List4 sur la ligne Freq (ou 1 sur la ligne Freq si tous les effectifs sont 1) \rightarrow EXIT-> SEL -> STATGRAPH1 ET STATGAPH2 doivent être en DrawOn -> DRAW

0

1 2

3

4

5

6 7

13

14 15

16

1,1

0,8

0,9

1

0,9 0,95 0,8

0,9

0,8

0,9

0,75

IV.4. Comment déterminer, sur tableur, la médiane et l'écart interquartile d'une série statistique ?

Méthode 4

Étape 1 Ouvrir une feuille de calcul \rightarrow Entrer les valeurs *xi* dans la colonne A.

Étape 2 Entrer dans une cellule la formule <u>=MEDIANE(_______</u>) en sélectionnant les valeurs.

Étape ³ Entrer dans une autre cellule la formule

=QUARTILE(<u>;3</u>)-QU	ARTILE(:	;1)	en sélectionnant à	i nouveau

ces valeurs.

Emanaiaaa

Exemple

Voici les relevés des prix (en €) d'une baguette de pain dans 16 boulangeries d'une ville :

1,10	0,70	0,80	1,00	0,90	0,75	0,90	1,00
1,00	0,90	0,95	0,80	1,00	0,90	0,80	0,90

Déterminez, à l'aide du tableur, la médiane et l'écart interquartile de cette série.

Étape 1 On entre les différents prix dans la colonne A. Ces valeurs correspondent à la plage A1:A16.

Étape 2 On entre la formule <u>=MEDIANE(:)</u>dans une cellule, par exemple C1

On obtient la médiane : Me = _____.

Étape 3 On entre la formule=QUARTILE(::3)-QUARTILE(::1)dans une cellule, par exemple C2.

On obtient l'écart interquartile : Q3 - Q1 =

Exercices				
1 p 5	2 p6	4 <i>p</i> 6	6 p7	7 p 7
9 p 7	10 p8	11 p8	12 p8	🗌 13 p8
🗌 14 p9	🗌 15 p9	18 p10	🗌 19 p10	20 p11
21 p11	22 p11	23 p11	24 p11	25 p 11
26 p11	29 p12	30 p13	32 p13	36 p14
37 p15	🗌 38 p15			
Investigation 1	p17	Investigation	2 p18	

