Statistics

 Lecture 6 (follow up) Descriptive statistics
By Dr.Chelli

Lecture objectives

\square Training students in calculating and using measures of central tendency and measures of variability

Introduction

To describe and summarize data, both measures of central tendency and measures of dispersion can be used. A measure of central tendency is a value that attempts to describe a set of data by identifying the central position within that set of data. Measures of variability provide indices of how dispersed or varied the scores are in a dataset. They include: This lecture introduces measure of central tendency classified as summary statistics and also measures of variability which measure how well an individual score represents the distribution.

Descriptive Statistics

Measures of central tendency

1. The mean, the most used measure can be used with both discrete and continous data though its use is most often with continous data.

- The mean generally makes sense for interval and ration scale measures.
It is calculated by summing all the values in the data set divided by the number of the values in that data set
The following formula is used:

continued

You notice that n refers to the sample an N to the population. Look at the following

$$
\begin{array}{|c|c|}
\hline \text { Sample Mean } & \text { Population Mean } \\
\hline \bar{X}=\frac{\sum X}{M} & H=\frac{\sum X}{N} \\
\hline
\end{array}
$$

2. The median is the middle point for a set of data that has been arranged in order of magnitude as shown below.

95	27	18	65	14	46	9	73	24	52	20

9	14	18	20	24	$\mathbf{2 7}$	46	52	65	73	95

How can you calculate the median in this example?

9	14	18	20	24	46	52	65	73	95

continued

We sum the two scores in the middle and divide by 2
$24+46=70 / 2=35$

continued

3. The mode is the most frequent score in a data set as shown below (18 is the frequent score).

95	27	$\mathbf{1 8}$	65	14	46	$\mathbf{1 8}$	73	24	$\mathbf{1 8}$	20

It is not used very often and is the only measure of centre appropriate for nominal data.
For example, if we are talking about the most frequently sold kind of TV, it does not make sense to talk about the mean or the median.

continued

The mode is generally used for categorical data where we want to know which is the most common category as shown in the graph.

Measures of variability

The extent to which the mean and median are representatives of the values in the original data set depends upon the variability or dispersion in the original data set. This can be measured by the range, the variance and the standard deviation.

* Variability is a quantitative distance measure based on the differences between scores
The purposes of measures of variability are:
\square To describe the distribution
\square Measure how well an individual score represents the distribution

1. The range (continued)

1. The range is the distance covered by the scores in a distribution from the smallest to the highest value.
It is the difference between the highest and the lowest score.
79849999132148198
The range of the scores above is:
$198-79=119$

2. The variance (continued)

The variance is a necessary companion to standard deviation.

The variance measures the average squared distance from the mean.

Calculation of the variance

Score	Mean	Difference	Difference squared
49	63.5	-14.5	210.25
99	63.5	35.5	1260.25
57	63.5	-6.5	42.25
17	63.5	-46.5	2162.25
63	63.5	-0.5	0.25
100	63.5	36.5	1332.25 $\sum=5007.5$ Variance=5007.5: 6= 834.58

Calculation of the variance (continued)

1. Find the deviation fro each score from the mean.
2. Square the deviations.
3. Find the sum of squared deviations
4. Find the average of squared devations (divide the sum by the number of observations.

Formula

$$
s^{2}=\frac{\sum(x-\bar{x})^{2}}{n-1} \quad \sigma^{2}=\frac{\sum(x-\mu)^{2}}{N}
$$

Another formula

$$
S^{2}=\frac{\sum X^{2}}{N}-\bar{X}^{2}
$$

3. The standard deviation

Most common and most important measure of variability is the standard deviation.
A measure of standard deviation, or average, distance from the mean describes whether the scores are clustered closely to the mean or are widely scattered.

continued

The calculation of the variance is necessary for that of the standard deviation because

The standard deviation is the square root of the variance.


```
whene S = the stanciarai deviation of a sammphe.
\sum mHesus "scurn of
K = each vamue in the data set.
X = mean of aN vahues in the data set,
N = rempobe of values in the date set.
```


continued

The Equation

Hhoroing thegnuit hi
 ompliatiqume

$$
S D=\sqrt{\frac{\sum(x-\bar{x})^{2}}{n}}
$$

continued

Standard Deviation (population) $=\sqrt{\frac{\sum_{1=1}^{n}\left(x_{1}-\text { mean }\right)^{2}}{n}}$

Standard Deviation (sample) $=\sqrt{\frac{\sum_{i=1}^{n}\left(x_{i}-\text { mean }\right)^{2}}{n-1}}$

Exercise: Calculate the mean, variance and standard deviations for the following tests.

Participants scores in an experiment about the effects of brainstorming on developing learners writing are :
\square Pre-test scores: $1,5,16,2,13,6,5,10,1,6,8$, 7, 2, 4, 15, 9, 3, 8, 10, 7

- Post-test scores: 6, 9, 17, 12, 15, 10, 13, 11, 9, $12,16,14,14,10,11,10,9,12,14,11$

You can watch these you tubes

- https://www.youtube.com/watch?v=E4HAYd 0QnRc
- https://www.youtube.com/watch?v=ztfaPxCq GiE

